All Software Modules

Earthquake

Protect operating equipment in seismically active regions

Generate shock tests that conform to common seismic test specifications such as Bellcore/Telcordia and IEEE344 standards. Run a shock pulse defined by a frequency vs. G peak table, perform multi-axis control, and access various waveform synthesis generation techniques.

Download Demo All Software Modules

Fulfill Seismic Test Specifications

Structures and equipment installed in seismically active regions must be designed to protect the operating equipment in the event of an earthquake. With the VR9500/VR10500, the user can perform single/multi-axis earthquake testing that meets test standards using an earthquake test template or user-defined time transient.

IEEE344 Features

  • Input filtering for measurement of zero period acceleration (IEEE344-Annex A) Multiple damping plots (IEEE344-Annex A) 
  • Time interval waterfall PSDs (IEEE344 – Annex B)
  • Sine Beat/Dwell/Sweep Fragility Testing (IEEE344 – Annex C) 
  • Peak stress cycle counting (IEEE344 – Annex D) 
  • Coherence Plots (IEEE344 – Annex E) 
  • Correlation Plots (IEEE344 – Annex E)

Common Seismic Test Specifications 

  • AASME NQA-1 
  • AC-156 
  • Bellcore (Telcordia) GR-63 
  • CAN3-N289.4-M86 
  • IEEE 344 
  • IEEE 382 
  • IEEE 693 
  • ICC-ES AC 156 
  • ISO 4866.2010 
  • ISO/TS 10811-1:2000 
  • QME-100 

Multi-Axis Control 

The VR9500/VR10500 can be used to control multi-shaker systems such as electrodynamic, servo-electric, and servo-hydraulic systems. Available multi-shaker control options including dual-axis with phase control, 3-axis (x-y-z) control, multi-loop (4-post) control, and earthquake controls. 

Link Multi-Axis Servo Control

 thumbnail

Kokusai Multi-Axis Control

 thumbnail

Easy Test Entry

Frequency/amplitude breakpoints of the background random acceleration spectrum are entered in an easy to read tabular form using frequency and amplitude breakpoints. Two-hundred separate frequency/amplitude breakpoints can be entered, allowing entry of virtually any test.

Earthquake testin
Manual Wavelet Manipulation 

Manually adjust the parameters of the underlying wavelets or allow VibrationVIEW to automatically create and run a test without intervention. Data plots include SRS pseudo velocity and SRS acceleration plots, and acceleration for primary (+), primary (-), or maxi-maxi.

Earthquake Test Generation Methods 

VibrationVIEW runs earthquake simulations with the User-Defined Transient option. There are two methods of creating an earthquake simulation: via template or import.

SRS Generation/Control 

Generate an SRS with standard synthetic waveforms such as linear and exponential chirp, wavsyn, burst random, linear and exponential chirp on burst random, enveloped random, and burst sine. Alternatively, iterate an SRS from the user waveform. 

Using a synthetic pulse or a user-defined time history waveform, VibrationVIEW can be set to automatically modify wavelets to adjust the time history waveform and meet SRS demand.

SRS Webinar

Fundamentals of VibrationVIEW - Response Spectra (SRS) thumbnail

Fundamentals of VibrationVIEW - Response Spectra (SRS)

Using Data to Improve SRS Development 

An SRS test uses a synthesized pulse to drive a shaker and simulate a transient event. Although developed to replicate seismic shock, defense and aerospace applications also apply the SRS.

With the SRS, engineers can better visualize the effects of a shock on a physical system. A designer can view the maximum dynamic load of various components or a total system as a function of frequency. This data can be correlated to the damage potential based on an input response. While the original pulse cannot be generated based on an SRS response, the engineer can determine the effects of a pulse that is similar to those of the recorded transient.

User-Defined Transient/SRS Control Modification

Use a synthetic pulse OR a user-defined time history waveform as the starting point, then VibrationVIEW will continue to modify the wavelets to adjust the time history waveform and meet the SRS demand.

  • Minor Adjustments made to the original time history
  • Meet or exceed RRS
  • Control on SRS vs. UDT
  • Adjusts wavelets to meet RRS

Using Data to Improve SRS Development

Shock Response Spectra (SRS) testing uses a synthesized pulse to drive a shaker, simulating a transient event. Originally developed to replicate Seismic shocks, the SRS approach is also widely used for defense and aerospace applications.

SRS White Paper

SRS allows engineers to better visualize the effects of a shock on a physical system. A designer can see the maximum dynamic load of various components or assemblies of a total system under test as a function of frequency. This can be correlated to the damage potential based on an input response. Although, the original pulse cannot be generated based on an SRS response the engineer does have the ability to know that the EFFECTS of a pulse are similar to those of the recorded transient.

Earthquake Testing Live

 thumbnail

How Can We Help You?

Contact Us