

SOUND & VIBRATION TECHNOLOGY

WELCOME

SOUND & VIBRATION TECHNOLOGY

COLLABORATION

CAPABLE & COMPETENT

ACCOUNTABLE & RESPONSIBLE

STRONG & DRIVEN WORK ETHIC

DO THE RIGHT THING

INNOVATION

INTRODUCTION

TEST MODES USED FOR GENERATING A TEST BASED ON REAL-WORLD DATA

- Field Data Replication
- Random Import
- Fatigue Damage Spectrum
- UDT/SRS
- Sine Tracking, Analysis & Generation (STAG)

Field Data Replication

Random Import

Fatigue Damage Spectrum

Shock Response Spectra

User Defined Transient

Sine Tracking, Analysis & Generation

INTRODUCTION

- The Problem:
 - Engine Test and Shaker Test don't generate the same failure
- Investigate the Data:
 - Evaluate the Engine Environment and compare with Shaker Test data
 - The Engine Environment had very dominant narrow peaks related to RPM
 - The Shaker Test seemed much higher in overall GRMS, but lacked the 'peaks'
- Research
- Create a Solution

Sine Tracking, Analysis & Generation

- What is an Order?
 - The number of events that occur per revolution
 - 1st Order Events happen once per revolution
 - 3rd Order Events happen 3 times per revolution
- What is Order Tracking?
 - Using a changing RPM reference to analyze the events that occur per revolution
 - Used to separate the rotational energy from the broadband random
 - A RPM vs. Frequency Spectrogram is typically used for viewing
- What environments can be analyzed?
 - Engine Ramp Up, Coast Down
 - Engines, Gear Boxes, Transmissions, Turbines, Pumps, Motors, etc.

THE TIME HISTORY DATA MUST INCLUDE AN RPM REFERENCE TRACE AND SENSOR DATA

THE RPM VS. FREQUENCY SPECTROGRAM IS USED TO HIGHLIGHT AND VIEW ORDER CONTENT

THE "ADD TOP 10 ORDERS" BUTTON WILL AUTOMATICALLY MARK THE APPROPRIATE ORDERS

USE THE ORDER CURSOR AND ORDER CROSS SECTION GRAPH TO VIEW ORDER DATA

VIEW THE HORIZONTAL CURSOR (FFT SLICE) TO MONITOR PEAK GENERATED BY CHANGE IN RPM

SINE PROFILE ACCELERATION

- Select orders that excite the structural resonances of the DUT
- Accelerate the Sine Tone Profiles using the Inverse Power Law
 - 'm'
 - Target Life
 - Test Duration
 - # of sweeps
- Manipulate the Sine Tone Profiles for the desired result
 - Sine Tone Dwell
 - Sine Sweep
 - Narrowband Sweep

$$\frac{G_{Test}}{G_{Engine}} = \left(\frac{Time_{Engine}}{Time_{Test}}\right)^{\frac{1}{b}}$$

 G_{test} = Test Level G_{engine} = Engine Level $Time_{engine}$ = Engine Expected Life $Time_{test}$ = Test Time b = negative inverse of SN fatigue life curve

GENERATE SINE TONE PROFILE(S) WITH STAG

SELECT ORDERS OF INTEREST, EVALUATE, MANIPULATE PROFILES FOR DESIRED PROFILES

EXPORT TO VIBRATIONVIEW

- Selected orders are extracted from the original time waveform
- Sine Tone Profile(s) are exported to a Sine on Random Test Profile
- Test Acceleration Parameters are exported to VibrationVIEW
- A new time history with the selected orders removed is exported to VibrationVIEW
 - The new time history file is analyzed with FDS to generate the RANDOM test

BENEFITS OF STAG

- Short Processing Time
 - Easy to use, Easy to make Changes, Easy to repeat
- Automated Profile Development
- Simplified Process with minimal information required
- Modifications are displayed immediately
- Accurate analysis and profile development
 - 1000+ points in the sine tone profile for accurate definition

Sine Tracking, Analysis & Generation

LIVE DEMONSTRATION

SOUND & VIBRATION TECHNOLOGY

ANY QUESTIONS?

+1.616.669.3028

vrsales@VibrationResearch.com

1294 Chicago Dr | Jenison, MI 49428 USA

VibrationResearch.com

You Tube

