Does Your Random Controller Square With Chi?
George Fox Lang, Independent Consultant, Hatfield, PA
Philip Van Baren, Vibration Research Corporation, Jenison, Ml

“Why does the random test spectrum look ragged?” is a frequently asked question. It is actually a far deeper question
than most interrogators realize. This article reviews the statistical nature of a random test’s spectra. We will provide
an answer to this nagging question; provide some valuable test planning information and present methods to
evaluate your controller’s statistical performance.

Random shake-tests have been used for nearly six decades, but few modern practitioners thoroughly understand the
statistical mathematics governing the physics of such tests. Gaussian noise deserves a little quiet study before
embarking upon your next laboratory exercise. There is rampant misunderstanding about the random test
measurements within the testing community. This article should help you better understand the relationships between
averaging, resolution, and minimum measurement time. This will allow you to better access the technical difficulty (or
feasibility) of performing a particular random test.

Of course, it is important to know that you can trust all of the settings on your controller. Our analysis of competitive
units accepted as trade-ins indicates that not all instrument designers fully understand random signal statistics. Methods
are presented that allow you to test your controller’s performance and to determine if its designers understand random
signal expectations as well as Johann Carl Friedrich Gauss (1777 to 1855) did. Such examination will prove to be time
well spent. You will better understand your chosen tool and come to have far greater (dare we say?) confidence in its
application.
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Figure 1: Vibration Research 8500 controller provides multiple statistical views of a random vibration test. PSD of Control
overlays Demand (between Alarm and Abort limits) at upper left. Measured (log amplitude) PDF overlays Gaussian bell at
lower left. Time histories of PSD Roof, Floor, Degrees-of-Freedom and % Lines within 1, %5 and % dB of Demand at right.
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A closed-loop random vibration controller functions to produce a transducer-sensed ‘shaped-random’ Control
acceleration with Power Spectral Density (PSD) closely matching a Demand spectrum (or target profile) of g%/Hz
dimension. It does so by generating a random Drive signal that is power-amplified and applied to the shaker. The Control
acceleration is expected to exhibit Gaussian amplitude statistics as demonstrated by a bell-shaped or ‘normal’
Probability Density Function (PDF). The PDF is expected to show a mean value, U, equal to zero and (approximately
equal) extreme positive and negative peak amplitudes exceeding + 30, where o is the standard deviation (the RMS value
when p=0).



All of this seems like a tall order, but modern vibration controllers meet all of these objectives (and more), enabling a
broad range of electrodynamic and hydraulic shakers to test an ever broadening population of test articles to ever more
stringent and sophisticated simulations of life’s environment. One of the statistical ‘givens’ for any random controller is
that both the variance (6%) and the PSD of the Control are governed closely by Chi-square (x?) statistics, these being
reasonable statistical expectations of a Gaussian time-history.
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Figure 2: Confidence Intervals (+ dB) for a x* variable such as PSD magnitude.

Figure 2 illustrates a fundamental expectation for any random shake-test: that measured amplitude of every g°/Hz PSD
spectral Line of the Control signal will be governed by predictable (+ dB) Confidence Intervals derived from the X
distribution. In fact, this expectation proves reasonable day-after-day in shaker labs around the world. We have come to
accept that we live in a world characterized by signals of Gaussian mean and Chi-square variance. For rapid reference,
key points from figure 2 are also presented in tabular form in Table 3 of the appendix.

The curves of figure 2 illustrate statistically reasonable bands of variation for a g’/Hz value with regard to two variables:
Confidence and Degrees-of-Freedom. Statistical Confidence is expression of the expected variation in a given estimate of
the PSD, and is typically expressed as a percentage. For example, 99% Confidence is shorthand for saying a given spectral
line will be inside the confidence interval 99% of the time, and will be outside the confidence interval 1% of the time. Or
equivalently, examining a snapshot of the PSD at any given time we would expect to find 99% of the spectral lines within
the confidence interval, and 1% of lines outside of the confidence interval. Degrees-of-Freedom (DOF), a statistical term
synonymous with the x* distribution, is a measure of the amount of data used to estimate the PSD. As one would
expect, the Confidence interval grows narrower as the DOF increases. In other words, the more data averaged together,
the more accurate the estimate of the true PSD value. It is important to emphasize that DOF is not a property of the
Control (or Drive) signal; it is a selected characteristic of the analysis of that signal. To restate that in another way,
control errors aside and assuming the controller is producing a Gaussian output, the statistics of the output of a
controller are independent of the DOF used by that controller.

The visual difference between the Control PSD and the Demand is often misunderstood to be a measurement of the
control-loop error. In fact, it is a display of the summation of two errors, the control-loop error and the PSD estimation
error. The control-loop error is the difference between the expected or central value of the Control PSD and the Demand
profile. The PSD estimation error is the natural scatter of a measurement about the expected value, as is described by
figure 2. If we could average the Control PSD forever (increase the DOF to infinity), the PSD estimation error would go to
zero, and any remaining deviation from the Demand would be the control-loop error. This is impractical; we must make
do with a Control PSD estimate averaged over a finite amount of time.

Hence, the control-loop error can never be certain to better than the scatter of the PSD estimation error. As intuition
might suggest, as more estimates of the Control PSD are averaged, the display process ‘tightens’ and the estimated
Control PSD more closely approaches the desired central value, giving a clearer view of the match to the Demand at
every frequency. However, while averaging reduces the PSD estimation error, it also ‘blurs’ the detection of any dynamic
change in the Control signal, masking instantaneous control-loop error.
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For test planning, it is frequently useful to present the x*relationships differently. Figure 3 illustrates the expected
percentage of spectral lines within and outside of any + dB tolerance bands ranging from 0 to £3 dB. Four curves are
presented, giving results for 80, 120, 160 and 200 degrees-of-freedom. Similar tabular data (for the Lines In-Band curve)
are presented in appendix Table 4.
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Figure 3: Percent of spectral Lines expected within and outside of a (* dB) tolerance band.
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Figure 4: the CALC tab of a VibrationView test SETUP allows the addition of user-defined measurements to a test.

The Vibration Research Corporation’s VibrationVIEW® software provides the (optional) ability to embed custom
calculators within a test. This facility can be used to provide real-time analysis of the control system’s statistical
performance. Within the Test Settings window is the CALC tab, illustrated in figure 4. Up to 32 algebraic equations may
be entered here, defining complex user-defined functions to be evaluated and graphically reported thoughout the
duration of a random shake test. For example, entering the following six statements generated the 6 right-hand traces of
figures 1 and 5.

1) Roof (dB) = 10*log10(max(Control/Demand))

2) Floor (dB) = 10*log10(min(Control/Demand))

3) DOF = 2*(mean(Control/Demand))*2/mean(((Control/Demand)"2)-(Mean(Control/Demand))*2)

4) within £1/4 dB = 100*Sum(Control>(0.944061*Demand)*Control<(1.059254*Demand))/(Sum(Demand>0))

5) within £1/2 dB = 100*Sum(Control>(0.891251*Demand)*Control<(1.122018*Demand))/(Sum(Demand>0))



6) within £1 dB = 100*Sum(Control>(0.794328*Demand)*Control<(1.258925*Demand))/(Sum(Demand>0))
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Figure 5: Statistics during the first minute of testing.

Figure 5 shows these six statistics for the first few minutes of a 20 to 2000 Hz NAVMAT test using 800 lines of resolution
and 80 degrees-of-freedom. It is especially interesting to watch these statistics during the initiation of a test. The upper
‘roof’ and ‘floor’ plots show the controller increasing the signal level toward the desired test level. It also illustrates the
upper and lower bounds of the PSD estimation error converging to within about +2 dB of the Demand and remaining
there throughout the test. The center plot shows the averaging process building up DOF as an increasing amount of data
is gathered and included in the average. At about 0.3 minutes into the test, the target 80 DOF is achieved. At this point
the ‘roof” and ‘floor’ values have stabilized. The lower plot shows the Control PSD error exceeded +1 dB for all lines until
about 0.1 minutes into the test. Thereafter, all three tolerance bands illustrate an increasing percentage of Lines within
tolerance. At 0.3 minutes into the test, the %, +% and +1 dB percentiles have all stabilized. As shown, 85% of all Control
spectral Lines are within +1 dB of the Demand, about 50% are within £0.5 dB and over 25% are within £0.25 dB
throughout the test. (Compare these findings with the first column in Table 4.)



120 DOF Goal at 1600 Lines (1.33 Hz Af) Resolution
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Figure 6: Effect of spectral resolution on the averaging epoch.

Figure 6 consolidates measurements from three 20 to 2000 Hz tests with 120 DOF specified, using 1600, 800 and 400
Lines of resolution. No other parameters were changed between these three tests. The red traces present the Calculated
DOF, while black traces give the Percent of Control Lines within £1 dB of the Demand profile. With a Gaussian signal and
proper operation at 120 DOF, we would expect to find 92.4% of the spectral lines should be within +1 dB of the demand.
Note that the time to specified DOF increases in almost direct proportion to the number of controller spectral Lines
selected. DOF/(2:-Af) is a good approximation of the time (seconds) required to converge on the desired variability if the
controller is programmed to average only independent or non-redundant (not overlapped) data frames. This estimates
the averaging epoch, that time required to ‘charge’ the averaging process with sufficient spectra to produce the
intended DOF. As shown in the following figures, if the controller is programmed to average overlapping frames (in
combination with a tapered spectral window function) the epoch-time can be reduced by a factor of nearly two.
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Figure 7: Ramp-up slope for independent data blocks.

Figure 7 provides the time-histories of the Measured DOF statistic during the start-up of three tests. These test differed
only by the number of DOF programmed. All three tests were constrained to average the Control PSD using only non-
redundant (not overlapped) frames of captured time history. In all three tests, the Hanning window weighted the

measured time-history in the FFT processing. Note the initial ‘ramp-up’ slope for all three tests was essentially equal and
well approximated by 5.4 DOF/Second.



Hanning Window - 50 % Overlap (2X Update Rate)

250 o
200
&
a
3
i 150 /
3 Poa S
: L N .
. ‘,' ¥ ok e T L T
o %Mwmw
| ———
o 10 20 30 40 50 &0

Figure 8: Ramp-up slope using 50% overlap averaging.

Figure 8 repeats the experiments of figure 7 with a single difference: the averaging was specified to use 50% overlap.
That is, the continuously incoming time-history was transformed (via FFT) twice during the time interval required to fill
the input time-data frame. This doubled the number of frames averaged per unit time. Note that the DOF/Second slope
in figure 8 is 10.3, nearly twice that of figure 7. This, of course, sets the stage for greed.
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Figure 9: Ramp-up slope using 75 % overlap averaging.

However, avarice goes unrequited in this instance. Figure 9 illustrates what happens when we quadruple the averaging
rate by specifying 75% averaging overlap. There is no further improvement in the DOF/Second slope, it remains at 10.3.
Hence, averaging at more than 50% overlap offers no further improvement in variance reduction per unit time. One
further observation in this matter is worth making.
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Figures 7 through 9 all used the well-understood Hanning window as the weighting factor in the FFT. In figure 10, four
tests all focusing on 100 DOF were conducted, each using a different window function. The Hanning, Hamming and
Blackman windows are all industry-standard windows for the analysis of continuous signals such as a random noise. The
Rectangular window amounts to performing the FFT without using any weighting; it is only appropriate for the analysis
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Figure 10: Overlap does not affect un-windowed FFTs.
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of captured transients or periodic signals harmonically-synchronized to the analyzer’s sample rate, but is used here to
illustrate a point. Note that this ‘un-weighted’ analysis only increased at 5.3 DOF/second. All three analyses run with
tapered window functions improved at about 10.3 DOF/second. An explanation for this is the 50% overlap recovers
some of the signal which was discarded by the tapering edges of the window function.

Figures 7 through 9 make a telling point: overlapped processing can (nearly) double the number of DOF per 1/Af time
periods averaged when 50% overlap is used. Increasing overlap beyond 50% offers no further advantage. In order to get
this processing reward, the FFT must be performed using a window function that ‘tapers’ the leading and trailing edges
of the time capture duration.

A Free and Easy Statistical Evaluation Tool for You

It is possible that your controller cannot perform ancillary calculations of the sort just discussed, or that you don’t
currently own the necessary optional software to implement embedded calculators (or to link your controller to other
analysis software in a client/server relationship). Or, perhaps, you just don’t feel at ease programming such data
transfers and investigations. Here is a simple alternative using the most popular and widely distributed analysis program
on planet Earth. Vibration Research Corporation offers a comprehensive spreadsheet compatible with any controller
that can export its Demand and Control spectra to Excel®. There is no charge for this analysis software. To download a
free copy, visit: www.VibrationResearch.com/ChiSquare. You will be asked to register to obtain your spreadsheet.

To analyze your controller, export up to 2048 lines of the Demand and Control PSDs (as text) from its display. Open the
Control Statistics spreadsheet using Excel. Paste the Frequency (Hz), Demand (g?/Hz) and Control (g%/Hz) into the (white)
area indicated on the Input tab of the spreadsheet. (Some controllers may use the terms Reference and Measurement
for Demand and Control, respectively.) An audit plot is automatically drawn; inspect this for proper form. Make four
typed entries: Controller ID, Test ID, Lines and DOF Controller Setting and proceed to the DOF Curve-Fit tab.
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Figure 11: Input tab of the VRC Control Statistics spreadsheet with NAVMAT test on 8500.
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The test illustrated in figure 11 was exported from a VR8500 system using a standard VibrationVIEW® “Save As ...
Spreadsheet File” command. The Demand is the familiar NAVMAT 20-to-2000 Hz profile to be run at 800 Lines of
resolution with 120 degrees-of-freedom. The controller was allowed to start and stabilize for longer than the “averaging
epoch” (described above) before harvesting data. As a matter of good practice, three exports were made and analyzed
to assure that each was ‘typical’.
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Figure 12: Comparison of NAVMAT test run on Brand X and VR8500 controllers.

Figure 12 compares the same test exported from another manufacturer’s controller using their text-export facility. Every
effort was made to exactly match setup parameters on both systems. While the resulting two displays are obviously very
similar, it appears that the competitive “Brand X” unit is providing tighter control with less scattered departure of the
(red) Control PSD from the (black) Demand spectrum. This is the kind of comparison that purchase decisions have been
made upon and it deserves deeper study.
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Figure 13: Curve-fitting Brand X CDF with ){2 for precise DOF measurement.

Figures 13 and 14 illustrate how to curve-fit a measurement (using the Brand X data). This is a two-step iterative
procedure. Note that yellow cells repeat the DOF Controller Setting and provide an estimate of the DOF using equation
(6) found in the appendix. Use the lower set of buttons to set the (white) Offset dB to 0 and then adjust the upper pair to
minimize the (blue) fit error’ reading. These upper buttons increase and/or decrease the CF DOF (curve-fit DOF) which
determines the shape of the theoretical (black) Control Error CDF (cumulative distribution function) line in the adjacent



plot. When the black line most closely fits the red dots of the experimentally-measured CDF, the blue cell displays the
minimum error’.

At this point, the three DOF readings should be quite similar to one another and the black x> CDF line should pass
through (or very close to) all of the measured red dots. However, it is possible that the fit can be improved by shifting
the fitted curve left-or-right from the x* CDF to compensate for a controller bias error. Use the lower controls to shift the
(dotted) curve-fit function left-or-right by an Offset dB from the theoretical x* CDF. (Red increase or decrease ‘hints’ will
appear to aid this effort.) Shift the curve-fit function, as required, to further minimize the blue fit error’ cell as shown in
figure 14. The right-most PDF also tracks these changes and compares the biased ¥’ fit function to the measured data.

[P —
£
=
n
15
10
‘ L1111
offserde oz || | o — [

- |ccmovefit 327525275 -3 1.95-1.51.35 -1 07505005 0 03505075 1 1LIS15175 2 23525275 3 375 235 175 -1.35 075 -0.35 035 075 135 175 13 175
Contrel foemand (du) ‘Control/Demand [d8)

Controller: Brand X
Test: NAVMAT

©OF =] 120 |centraller Setting

DOF 330 |Fstimated as wia)’

ted degress-of-freadam (DOF)'
e fit errort

Parcant Lines

Correct for Offset Trer L

Praability of Gecurance(%)

Figure 14: Curve-fitting Brand X CDF for bias error.

Iterate between the upper and lower button-sets to assure that the absolute minimum fit error? for your measurement
has been found. Then proceed to the Results tab. Note that the CF DOF is the most precise estimate of degrees-of-
freedom that the controller exhibits (within a specific instance of PSD display).

B Meaured W curwesfit
n
8
[]
4
- | |
S | | —

ve fit 327525235 2 17515025 -1 07505025 0 0.3505075 1 12515175 2 23525275 3 275 225 175 L35 075 035 0.5 075 LIS 178 23 278
Control/Demand (d) Controlftemand [dB)

Controller: VAT 8500
Test: NAVMAT

g

©OF =] 120 |centraller Setting

DOFs| 132 |Fstimated as 2(ua)’

"=

[Enter estimated degress-of-fresdam (DOF)"
then minimize fiterar

PareentLines

Probability of Gccurance(% ]

Correct for Offset Trer L

-

Figure 15: Fit results for VR8500.

Figure 15 presents the curve-fit of the VR8500 measurement for comparison. Note the lower central slope in the CDF
indicating a broader range of amplitudes (greater Control-Demand difference) than the measurement of figure 14. This
is also reflected by the broader skirts of the right-hand PDF. Also note the very small Offset dB (0.02 dB) fitted to this
measurement; the dotted curve-fit function and the solid line from ¥ theory are in closer agreement than for the Brand
X controller. This closer match is indicative of more Gaussian-like signal behavior. Finally, note that both computed
values of the DOF match closely with the value (120) entered as a set-up parameter.

In this example, both controllers targeted a 120 DOF controller setting. The VR8500 exhibited a 2(1/c)’ estimate (from
equation 6) of 122 and a CF DOF of 126. In contrast, the Brand X controller exhibited a huge DOF discrepancy and strong
evidence that its behavior was far from compliant with well-accepted Gaussian behavior. The 2(/1/0)2 estimate was 324
DOF, in serious disagreement with the 120 DOF programmed into the controller. Before secondary fitting for bias error,
the best-fit CF DOF was 294, however there remained a large fit error’. Fitting a substantial -0.12 dB bias to this
measurement and re-tuning the CF DOF to 324 minimized the fit error’.
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Figure 16: Comparison of Results for Brand X and VR8500 Controllers.

Moving on to the Results tab provides a 13-item summary report and a Percent PSD Lines versus Tolerance Band (+dB)
plot. Figure 16 compares the Brand X (upper and left) results with those of the VR8500. Note that over 99% of Lines of
the Brand X controller are within = 1 dB of the Demand PSD. In contrast, only about 92 % of the VR8500 Control PSD
Lines are within = 1 dB of the Demand profile.

In short, the casual observation about figure 12 suggesting a ‘tighter’ control by Brand X is substantiated and
numerically quantified. However, Table 4 tells us that a 120 DOF test should only have 92.4% of its Control PSD lines
within + 1 dB of the Demand. While the VR8500 delivered performance in close agreement with x* theory for 120 DOF,
the Brand X machine provided that ‘tighter’ spectral picture. As statistics theory tells us, either the controller is not
honoring the requested DOF setting, or the signal being analyzed is significantly non-Gaussian. Either case is a situation
worthy of very serious discussion with the manufacturer!

Independent Analysis of the Control Signal Time-History
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Figure 17: Independent analysis compares two controllers.
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Brand X is clearly delivering a picture suggesting tighter control than its DOF setting and X* theory would support. But is
it really delivering tighter control? We will settle this conundrum by using independent analysis; figure 17 illustrates the
scheme. The VR8500 and the Brand X controller were both programmed to control the same 120 DOF NAVMAT
“loopback” test. Their Drive output time-histories were simultaneously recorded and the resulting (large!) disk file was
converted to a .MAT format for analysis using MATLAB®. An M-file script was written to compute the PSDs of the two
Drive signals. The averaging was performed at exactly 120 DOF by averaging 60 unique input blocks.
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MATLAB Spectrum - from simultaneous recording

Figure 18: Independently measured PSDs of the two controller Drive signals.

Figure 18 compares the resulting spectra. Note that the two controlled time-histories actually exhibit very similar
spectral dispersion when analyzed by an independent spectrum analyzer. This was reaffirmed by capturing the (text)
results of figure 18 and analyzing them using the Control Statistics spreadsheet. The results are shown in figure 19.
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Figure 19: Spreadsheet results for MATLAB spectra of two controllers.

Note the close agreement of the independent analysis of the outputs from the two controllers. Of course, the 60 non-
overlapped blocks averaged by MATLAB caused both PSD estimates to exhibit very nearly 120 DOF. (Remember, the DOF
are a property of the analysis of a PSD, not of the signal being analyzed, so this is an expected result.) Note the very
similar measured dispersion (about 92 % within £ 1 dB) of the red dot patterns exhibited by the two instruments. Most
importantly, note the similarity of the independent analysis with the VR8500 results of figure 16. Clearly, the Brand X
controller gave a misleading and self-aggrandizing impression of its performance on-screen which was not consistent
with the requested 120 DOF.

Cross-Analysis Provides Interesting Insight

Demand Demand

Drive -—1— —]: Drive
Control — v 3 Control

Monitor ——— “———— Monitor

Figure 20: Cross-Controller test scheme.

A variation on the independent analysis scheme is to pit two controllers against one another as shown in figure 20. The
two controllers run the same loopback test simultaneously. Each controller monitors the other’s Drive signal using an
auxiliary input channel. The PSDs of both the Control and Monitor signals are captured from the displays of both
instruments. The analysis of both signals as monitored by each controller can be performed using the Control Statistics
spreadsheet.

Using this method, the VR8500 was simultaneously compared against controllers manufactured by three different
competitors. The four controllers were cross-wired and a standard NAVMAT profile of 800 lines and 120 DOF was
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programmed into each machine. Further, the Drive outputs of all four controllers were simultaneously recorded and
then independently spectrum analyzed using MATLAB. The comparative results are summarized in Table 1. Note that the
DOF estimation itself has some variability, as can be seen in Figures 6 through 10. For all cases reported in Table 1 the
DOF was estimated from multiple independent PSD measurements, and the median value of all results is listed in the

table.

Table 1: Results of 120 DOF Cross-Controller Tests with Brands X, Y and Z

Meas:rsez VR8500 Brand X Brand Y Brand Z MATLAB

by - (120 DOF) (120 DOF) (120 DOF) (120 DOF) (120 DOF)
VR8500 121 234 115 227 122
Signal Brand X 92 278 94 163 90
Source Brand Y 93 179 129 167 83
Brand Z 144 288 142 292 155

Table 1 reveals some large differences between the four controllers. Most strikingly, the numbers derived from the
Brand X and Brand Z screens are approximately double what one would expect when requesting 120 DOF. This indicates
that those two controllers are not honoring the DOF value entered, but rather are using double the requested value. By
using twice as much averaging as was requested by the operator, these controllers give an apparently flatter PSD than
the controllers which actually use the requested amount of averaging.

This begs for another test, using a requested DOF of 60 for the Brand X and Brand Z controllers, and a requested DOF of
120 for the VR8500, Brand Y, and Matlab analysis. If the Brand X and Brand Z are indeed doubling the requested DOF,
then this will give similar results on all four controllers, and allow for a 1-to-1 comparison of the results. The results of
this test are shown in Table 2.

Table 2: Results of 60 and 120 DOF Cross-Controller Tests with Brands X, Y and Z

Measslzg VR8500 Brand X Brand Y Brand Z MATLAB

by - (120DOF) (60DOF) (120 DOF) (60 DOF) (120 DOF)
VR8500 119 118 122 115 119
Signal Brand X 102 137 106 98 98
Source Brand Y 94 85 134 92 86
Brand Z 145 146 150 149 156

In Table 2 we find that all four controllers, when analyzing the outputs of their peers, give results consistent with the
independent Matlab analysis. However, when the Brand X and Brand Y controllers evaluate their own output, they give
notably higher DOF estimates. This means the ‘control’ signal traces which those controllers present on-screen are
significantly smoother than is supported by independent analysis.

Now consider the behavior of the four signals as analyzed by the other controllers. The laws of statistics tell us that if the
signal is Gaussian, then the PSD will have a Chi-Squared probability distribution with 120 DOF. When the VR8500 output
is examined by all five analyzers the results are within +2/-4 % of the expected 120 DOF, indicating the VR8500 output is
consistent with Gaussian probability theory. However, the output signals of both Brand X and Brand Y were significantly
lower than the expected 120 DOF, and the output signal of Brand Z was significantly higher than the expected 120 DOF.
These numbers cast the strong suspicion that the Drive signals of all three competitive systems depart from Gaussian
form in some significant manner.

Conclusions

Why does the random spectrum displayed by a Vibration Research controller look ragged? Because it is supposed to
look exactly that way! Evidence now exists that some commercial random controllers actually use more than the
number of DOF specified in their setup parameters for PSD calculation. This error can result in the appearance of a
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tighter +dB match between the Demand and Control spectra than theory,the operator-entered DOF, or independent
analysis will support. Controllers made by two different manufacturers have been found with this defect. Strong
evidence of non-Gaussian signal behavior has also been found in controllers offered by three competitors.

Several testing methods to disclose and characterize such undesirable statistical behavior have been discussed and
demonstrated. The simple use of a spreadsheet combined with text export of an instrument’s PSDs makes very good
sense. The test is simple to perform and meaningful answers can be had with just a few minute’s work. If your controller
does respect the laws of physics and probability, the tables and graphs in this article can aid your test design and
planning efforts. If your controller doesn’t understand the xz distribution, it can confuse and confound your effort to
conduct your tests scientifically. Don’t let this happen.

What is the ¥* distribution? Appendix

The Chi-square (x?) distribution is a Probability Density Function (PDF), an equation describing the likelihood that a
sample’s amplitude will be within certain bounds. Like the strongly related ‘normal’ or Gaussian distribution, this
statistical model fits very well with observations we can make of the world around us. However, the x*is only applicable
to the very specialized circumstance where each constituent in the population to be analyzed has been formed by
squaring samples drawn from a Gaussian population and summing (or averaging) a fixed number of them. Random
shaker control is one of those situations that fit this model exactly.

The random shaker-controller functions to produce a broad-band noise with a controlled spectral shape, matching the
Power Spectral Density (PSD) prescribed by the Demand reference profile. The amplitude statistics of the resulting
Control acceleration time-waveform are Gaussian and this may be verified by measuring an amplitude histogram, and
seeing its close match to a Gaussian PDF curve. (See figure 1 lower-left, for example.)

Within the control loop, the PSD of the controlled signal is continuously measured, monitored and compared against the
desired profile as well as Alarm and Abort safety limits. Further, this fundamental measure of control success is
continuously displayed to the operator. The PSD is measured by power averaging a sequence of instantaneous spectra
calculated by using the Fast Fourier Transform (FFT). An FFT produces a complex spectrum; at every Line (frequency
point), a Real and Imaginary spectral amplitude are calculated. Like the time-history from which they come, the real and
imaginary components (independently) are Gaussian distributed variables, because the FFT is a linear transform.
Interestingly, the vector resultant or Magnitude of these components is not distributed in accordance with the Gaussian
bell-curve. Instead, it is governed by the Rayleigh distribution, yet another classic statistical distribution (which will not
be discussed here).

Each FFT spectrum measured is multiplied by its own complex conjugate to produce an instantaneous power spectrum
with real spectral amplitude equal to the sum of a squared Real component and a squared Imaginary component. That
is, at every frequency the instantaneous power spectral amplitude is the sum of two squared Gaussian components or
degrees-of-freedom (DOF). When N such ‘squared spectra’ are ensemble averaged, each resulting spectral Line reflects
the contribution of 2N DOF. Thus, the x* distribution describes the ‘power’ amplitude statistics of both instantaneous
and averaged power spectra.

The x*distribution is only defined for a positive sample amplitude, x. Unlike the bell-shaped Gaussian distribution, the x°
cannot be ‘normalized’ to a single symmetric shape. Instead, its shape is ‘skewed’ or asymmetric. Further, that shape
changes with the number of DOF in the population samples. Equation (1) describes the x* PDF which is illustrated in
figure 21.
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Figure 21: x2 PDF for 1, 2, 5, 10, 20, 50 and 100 DOF.

Dy2 (x, k) = (I{;x(g_l)e(g_l) (1)
2

Where: p,2(x, k) is the x? Probability Density Function (PDF)
X represents a (positive) amplitude proportional to a sample from a “sum of squares” population
k is a positive integer representing the degrees-of-freedom (the number of squared samples summed)
e is the base of the Napierian or natural logarithm (2.7182...)
!/'indicates factorial expansion (i.e. 3! =3:2:1 = 6)

Figure 21 is clearly very different than the ‘normal’ bell-curve Gaussian PDFs we are used to looking at. However, it
shares some common characteristics with that more familiar function. Firstly, the area under each PDF is equal to 1.0
and is non-dimensional. This is reflected by the units of the PDF plot in figure 21, wherein the vertical axis units are the
reciprocal of the horizontal axis units. In contrast, the vertical units of a histogram, (an un-calibrated PDF) are expressed

in counts (or percent-of-counts measured).
That is, by definition: fom 2% (x,k)dx = 1.0 (2)

The “running integral” of the PDF (spanning amplitude of 0 to 1.0) is termed the Cumulative Distribution Function (CDF)
and is shown in figure 22. Note that this function is quite similar in general form to the CDF for other statistical
distributions, including the Gaussian. It presents the area under the curve of figure Al as x increases from zero towards

infinity.
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Figure 22: x2 CDF for 1, 2, 5, 10, 20, 50 and 100 DOF.
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Equation (2) implies that the probability of x falling between values a and b (P[a < x < b]) may be stated:
Pla<x<bl)= f;po(xk)dx <10 (3)

The integral operation of (3) is more simply accomplished by simply subtracting the appropriate amplitude at x=b from
that at x=a in figure 22.

The shapes of the seven PDF curves presented in figure 21 can better be appreciated by scaling the plot axes. If the
horizontal axis values are divided by the DOF and the vertical axis values are multiplied by the same factor, the area
under each curve remains 1.0 and the peak value of the curves is reached slightly to the left of x/DOF=1.0. This is shown
in figure 23 using the same data shown in figure 21.

N

w/daf

Figure A3: DOF-scaled x2 PDF curves at 1, 2, 5, 10, 20, 50 and 100 DOF.

It is clear that the x*> PDF changes shape quite dramatically with DOF. For a single DOF, the PDF has an almost ‘1/x’
character. At 2 DOF, as results from a single FFT spectrum, it has a ‘decaying-exponential’ form. As the DOF increase, a
dominant peak value is found near x=k. In fact, the )(2 distribution has a mean value, Hy2 equal to exactly the DOF, k, in
accordance with:

A

b
e = J pyr (o k)xdx =S ¥N % = k .

Where: X1, X3, X,, --* Xy are samples taken from a population governed by the distribution, |1 2%: (x, k)
 is a scale constant relating X; to x

It is also interesting to note that that 2% (x, k) has a variance, 0'2)(2 equal to exactly 2k. That is:

b A
02 = [P )x?de — 2 o = B (32— 42 ) = 2k (5)

This leads to the very interesting and useful relationship (6) from which the DOF can be measured experimentally. (See
the third equation discussed in Realtime Analysis During a Test, for example.)
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Useful Tables
Table 3: Confidence Intervals (dB) for x2 distributed variable at various percent Confidence and Degrees-of-Freedom

Confidence > 99.9% 99% 95% 90%
DOF |

80 2.05 -2.52 1.63 -1.94 1.25 -1.46 1.05 -1.22
100 1.85 -2.23 1.47 -1.72 1.12 -1.29 0.95 -1.08
120 1.70 -2.01 1.35 -1.56 1.03 -1.17 0.87 -0.98
140 1.59 -1.85 1.25 -1.43 0.96 -1.08 0.81 -0.91
160 1.49 -1.72 1.18 -1.33 0.90 -1.01 0.76 -0.84
180 1.41 -1.62 1.11 -1.25 0.85 -0.95 0.72 -0.79
200 1.34 -1.53 1.06 -1.18 0.81 -0.90 0.68 -0.75
220 1.28 -1.45 1.01 -1.13 0.77 -0.85 0.65 -0.71
240 1.23 -1.39 0.97 -1.08 0.74 -0.81 0.62 -0.68
260 1.19 -1.33 0.94 -1.03 0.72 -0.78 0.60 -0.65
280 1.15 -1.28 0.90 -0.99 0.69 -0.75 0.58 -0.63
300 1.11 -1.23 0.87 -0.96 0.67 -0.72 0.56 -0.61

Table 3 presents commonly sought points from figure 2 while table 4 summarizes useful planning points from figure 3.

Table 4: Percent Probability of 1 Line being within a #dB Band for various Degrees-of-Freedom

DOF — 80 100 120 140 160 180 200

10.25 dB 28.36 31.55 34.38 36.95 39.29 41.46 43.48
10.50 53.23 58.34 62.66 66.37 69.61 72.45 74.97
10.75 72.36 77.65 81.77 85.03 87.65 89.77 91.49
+1.00 85.26 89.48 92.40 94.47 95.94 97.01 97.79
+1.25 92.90 95.64 97.28 98.29 98.91 99.31 99.55
11.50 96.89 98.39 99.15 99.55 99.76 99.87 99.93
+1.75 98.75 99.47 99.77 99.90 99.95 99.98 99.99
12.00 99.53 99.84 99.94 99.98 99.99 100.00 100.00
12.25 99.83 99.95 99.99 100.00 100.00 100.00 100.00
12.50 99.94 99.99 100.00 100.00 100.00 100.00 100.00

12.75 99.98 100.00 100.00 100.00 100.00 100.00 100.00
13.00 99.99 100.00 100.00 100.00 100.00 100.00 100.00

A question often asked about a Control PSD is: “What is the probability that some specified number or all of the spectral
Lines will fall within =1 dB (or some similarly specified tolerance band)?” The answer depends upon the probability of
any single Line falling within the band (F,,, ) and upon the number of PSD Lines in question, P, given by table 3.

If Py is the probability of a single Control Line falling within +x dB of the Demand, than:

P, = (Pany)L (7)

Where: P; is the probability of L Lines in the spectrum being within the same +x dB span
L is the number of Lines that must all exhibit spectral amplitude within £x dB

Table 4 presents equation (7) results for 10 Lines, inasmuch as some test specifications require that no more than one
outlier occur within any contiguous 10 spectral lines.
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Table 4: Percent Probability of 10 Lines being within a +dB Band for various Degrees-of-Freedom

DOF — 80 100 120 140 160 180 200
10.25 dB 0.00 0.00 0.00 0.00 0.01 0.02 0.02
10.50 0.18 0.46 0.93 1.66 2.67 3.99 5.61
10.75 3.94 7.97 13.37 19.76 26.76 33.97 41.10

11.00 20.30 32.89 45.36 56.59 66.10 73.83 79.97
+1.25 47.89 64.02 75.92 84.15 89.65 93.27 95.63
11.50 72.94 85.05 91.86 95.58 97.60 98.69 99.28
*1.75 88.18 94.78 97.69 98.97 99.53 99.79 99.90
12.00 95.40 98.37 99.41 99.79 99.92 99.97 99.99
12.25 98.34 99.53 99.86 99.96 99.99 100.00 100.00
12.50 99.44 99.87 99.97 99.99 100.00 100.00 100.00
$2.75 99.82 99.97 99.99 100.00 100.00 100.00 100.00
13.00 99.94 99.99 100.00 100.00 100.00 100.00 100.00

Table 5 presents equation (7) results when all of Lines of a 400 Line spectrum must be within +x dB of the Demand.

Table 5: Percent Probability of 400 Lines being within a #dB Band for various Degrees-of-Freedom

DOF — 80 100 120 140 160 180 200
10.25 dB 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
11.25 0.00 0.00 0.00 0.10 1.27 6.16 16.71
+1.50 0.00 0.15 3.35 16.41 37.79 58.92 74.84
1.75 0.65 11.72 39.21 65.96 82.91 91.81 96.15
12.00 15.23 51.89 79.05 91.77 96.86 98.81 99.55
12.25 51.29 82.87 94.71 98.41 99.52 99.86 99.96

12.50 79.76 95.08 98.85 99.73 99.94 99.98 100.00
2.75 92.95 98.74 99.78 99.96 99.99 100.00 100.00
13.00 97.78 99.70 99.96 99.99 100.00 100.00 100.00

Table 6 presents equation (7) results when all of Lines of an 800 Line spectrum must be within +x dB of the Demand

Table 6: Percent Probability of 800 Lines being within a +dB Band for various Degrees-of-Freedom

DOF — 80 100 120 140 160 180 200
0.25dB 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.25 0.00 0.00 0.00 0.00 0.02 0.38 2.79
1.50 0.00 0.00 0.11 2.69 14.28 34.71 56.01
1.75 0.00 1.37 15.38 43.51 68.73 84.30 92.45
2.00 2.32 26.92 62.49 84.21 93.83 97.64 99.10
2.25 26.30 68.68 89.70 96.84 99.05 99.71 99.91
2.50 63.61 90.40 97.71 99.46 99.87 99.97 99.99

2.75 86.39 97.50 99.55 99.92 99.99 100.00 100.00
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