Random Averaging

An Exploration of Power Spectral Density Estimation

Questions

How should we deal with a change in level?

How can we meet tolerance at a change in level?

iDOF Truisms:

- 1. "You don't know what you don't know"
- 2. "The smoothest control lines display in the industry"
- 3. "The world is not linear"

Experience:

- How to run the test
- AND get the report you need

- The purpose of the controller is to ensure the actual vibration measured meets the programmed vibration of the test profile.
- The controller does this by monitoring the input response from the accelerometer and making adjustments to the drive voltage.

- The purpose of the controller is to ensure the actual vibration measured meets the programmed vibration of the test profile.
- The controller does this by monitoring the input response from the accelerometer and making adjustments to the drive voltage.

Multiplication of Low-Level Data

- Most common method
- What it does
 - -Averages PSD at low level
 - Scales the average to match level changes

Multiplication of Low-Level Data

• Pros

-Quickly displays a PSD within tolerance

- Cons
 - Can hide actual out-of-tolerance conditions

Level: -20 dB

Level: Full Level

Non-updating of the PSD

- What it does
 - Suppresses display until traces are sufficiently averaged

Non-updating of the PSD

- Cons
 - Can't see what is happening on the shaker
 - Can hide actual out-of-tolerance conditions

Reset Averaging

- What it does
 - Restarts averaging with every change in level

Reset Averaging

- Pros
 - Quickly displays *exactly* what is occurring on the shaker
- Cons

- Takes some time for the averaging to bring traces within tolerance lines

With a resetting of averaging comes an increasing of variance.

Why?

The Generation of the PSD Plot

Welch's Method

Gaussian data

partitioned into frames

transformed into the frequency domain

squared-magnitude taken

averaged

Chi, Chi, Chi

Welch's Method

Gaussian input + linear transform \rightarrow Gaussian output

Gaussian output + squared-magnitude -> Chi-square distribution

Inherent Properties of PSD Estimation

Variance (Raggedness)

Inversely proportional to number of frames averaged

High variance in the early test stage
High variance when averaging is reset

Cause: Randomness. Therefore, expected.

F = 50

. Jailda entre ital per planate a report natebli dan appantile, ditmangi anti bilaning propora piantin da fatip

a handi pahala ina ana panjana ana kanadi kani na nanistra na na na na na na kalana da kana da ma di na ma kana A

F = 100

Inherent Properties of PSD Estimation

Occasional lines out of tolerance

Reigned in with averaging

Cause: Randomness. Therefore, expected.

Probability of all 800 lines within tolerance for a given tolerance dB and averaging DOF

DOF=	120	200	300
± 3 dB	99.92%	100.00%	100.00%
± 2 dB	62.49%	99.10%	99.99%
± 1.5 dB	0.11%	56.01%	96.94%

Probability of Satisfying Tolerance

Time required to achieve DOF: 24 s

Resetting the Averaging: Does this meet tolerance?

Yes.

How? Look more closely at the test specs.

In Conclusion

- 1. Multiplication of low-level-data method is *misleading*.
- 2. Averaging should be *reset* at a change in level.
- 3. At times we *expect* high variance, or a line or lines out of tolerance, by virtue of *randomness.*

One More Thing...

• There is a way to rapidly but accurately display a smooth, low-variance PSD plot.

iDOF™

- An innovative method of PSD estimation
 - Rapidly reduces estimation error
 - Accurately displays actual vibrations
 - Clearly informs the operator

iDOF[™] *Methodology*

- Two Sources of Error
 - Estimation Error
 - Control Error
- iDOF[™] confidently removes estimation error, allowing the user to more clearly and quickly see control error.

Result

- With iDOF[™], the PSD plot
 - Accurately displays the actual vibrations at the current level
 - Converges to a smooth plot in a short amount of time
 - Manifests significantly lower variance (less raggedness)

Example #1: Minimal Control Error

Traditional Averaging

With **iDOF™**

Example #2: Control Error Present

Traditional Averaging

With **iDOF**™

Variance Reduction

An innovative PSD estimation method that...

...Rapidly reduces estimation error and as a result...

Quickly smooths the PSD plot,

Clarifies the PSD plot,

Exposes actual vibrations, and

Clearly informs the operator.

Demonstrate Live controller

DoF Calculator

 Is it statistically possible to satisfy the tolerances of your random vibration test? How much time will it take to average enough data to meet your specifications?

<u>Click Here for Link</u>

Previous Questions

- Is IDOF a one time license? Is IDOF compatible with the VR8500?
- What is the method used by VR controllers for random control without iDOF?
- How do you integrate IDof into your current control system?
- In the absence of iDOF, how is data displayed in VibrationVIEW: scaling, display delay, rest averaging?

For More Info

Schedule a personal conversation with our team following this presentation

Visit us at: www.vibrationresearch.com

PowerPoint Presentation

If you want a copy of these slides please contact <u>aaron@vibrationresearch.com</u>

Thanks!

References

- Van Baren, Philip, "Statistical Properties of the Random PSD," Vibration Research Corporation Technical Paper, <u>http://www.vibrationresearch.com/public_pdf/StatisticalPropertiesOfR</u> <u>andomPSD.pdf.</u>
- Van Baren, John, "Is Your Random Vibration Testing Fulfilling MIL-STD-1540D?", Vibration Research Corporation Technical Paper, <u>http://www.vibrationresearch.com/public_pdf/Fulfilling_MIL-STD-</u> <u>1540D-Tolerance_on_Vibration_Controllers.pdf.</u>
- 3. Lang, George and Van Baren, Phil, "Does Your Random Controller Square With Chi?", Vibration Research Corporation Technical Paper, <u>http://www.vibrationresearch.com/public_pdf/SquaringWithChi.pdf.</u>

