#### **Transducers for Data Acquisition and Testing**

February 2017



# Meet VR





Aaron Offringa Application Engineer





- Accelerometer Construction
- IEPE Supply and T.E.D.S.
- Selecting the right Accelerometer
- Configuring an Input
- Input Settings in VibrationVIEW



- Piezoelectric sensors
- Dynamic vs. Static Measurement
- IEPE Designs
- IEPE Transducer Characteristics
- Charge Mode Transducer Characteristics
- Mounting Considerations
- Transducer Selection
- TEDS
- Handling





- Why Piezoelectric Sensors?
  - Small Size
  - Lightweight
  - 2-Wire operation (IEPE)
  - Wide Range
    - Dynamic Range
    - Temperature Range
    - Frequency Range
  - Low Noise Floor
  - Simple Signal Conditioning
  - Cost Effective Implementation





- Common Testing Environments for Piezoelectric Sensors:
  - Modal Analysis
  - Environmental Stress Screening (ESS)
  - Health and Usage Monitoring Systems (HUMS)
  - Predictive/Preventative Maintenance
  - Pyrotechnic Events
  - Aircraft Flight Monitoring
  - Vibration Testing





- Piezoelectricity
  - Definition:
    - Piezoelectricity is the ability of some materials (notably crystals and some ceramics) to generate an electrical potential in response to applied mechanical stress. This may take the form of a separation of electrical charge across the crystal lattice. If the material is not short-circuited, the applied charge induces a voltage across the material. The word is derived from the Greek word piezien, which means to squeeze or press
  - The crystal converts mechanical energy into electrical energy
  - Types of piezoelectric materials:
    - Quartz, Tourmaline, Ceramic (PZT), GAP04....



- Transducers come in many different sizes and shapes.
- Red → Piezoelectric Crystals
- Grey → Seismic Mass
- Arrows indicate direction of stress
- Shear Configuration
  - Most common for accelerometers
  - Wide frequency range
  - Low off axis sensitivity
  - Low sensitivity to base strain
  - Low sensitivity to thermal input





- Force, Pressure and Acceleration
  - − Blue → Sensor Housing
  - Red  $\rightarrow$  Piezoelectric Crystals
  - Black  $\rightarrow$  Electrode, where charge builds
  - Yellow → Microcircuit
  - Green  $\rightarrow$  Seismic Mas
- Seismic mass is forced to follow the motion of the base. Resulting force on the crystals is calculated by Newtons Second Law of Motion: F=MA





#### Piezoelectric Transducers

- The active element is a piece of piezoelectric material. When compressed a particular voltage output can be measured based on the amount of force being applied to the material.
- Common types of Piezo Sensors:
  - Voltage Mode (IEPE, LIVM, ICP, Piezotron, Isotron)
  - Charge Mode





Compression



Planar Shear





Annular Shear

Shear



#### • IEPE/ICP Power Supply

- 2 Wire System
- Common wire for power and signal
- Additional conductor for signal ground

- Supply Specs
  - 18-30 VDC
  - 2-4 mA DC
  - Constant Current supply



Transducer Electronic Data Sheet (TEDS)

|                         | Manufacturer ID                      | 43 (Accel MFG 123) |
|-------------------------|--------------------------------------|--------------------|
| Pacie TEDS              | Model Number                         | 7115               |
| Dasic ILDS              | Version Letter                       | В                  |
|                         | Serial Number                        | X001891            |
|                         | Calibration Date                     | Feb 29, 2016       |
|                         | Sensitivity @ ref. condition (S ref) | 10.123 mV/G        |
| Standard and Extended   | Physical measurement range           | ± 500G             |
| TEDS (fields will yory  | Electrical output range              | ± 10V              |
| according to transducor | Reference frequency (F ref)          | 100.0 Hz           |
|                         | Quality factor @ Fref (Q)            | 300 E-3            |
| type)                   | Temperature Coefficient              | -0.48 %/°C         |
|                         | Reference temperature                | 23°C               |
|                         | Sensitivity direction (x,y,z)        | Х                  |
| Liser Area              | Sensor Location                      | Strut AB12         |
| USEI AIEd               | Calibration due date                 | Feb 28, 2017       |



- Voltage Mode Transducers
  - Utilize some type of quartz or ceramic piezo material
  - Built in Electronics
  - Low Cost Signal Conditioning
  - Limited upper temperature range due to onboard electronics
  - Modern analyzers, DAQ's, and controllers have IEPE power built in
  - Available with TEDS (Transducer Electronic Data Sheet)
  - Easy to configure, connect, and use







measure. analyze. innovate.

MEGGITT

Endevco

**DJB** Instruments

- Sensor Resonance
  - Accelerometers are a spring mass system
    - Has a natural resonance
  - When selecting an accelerometer:
    - For Error < 4% ensure the natural frequency is AT LEAST 5x greater than the highest frequency measured
    - For Error < 1% ensure the natural frequency is 10x greater!









- Mounting Considerations
  - Probe Tip
  - 2-Pole Magnet
  - Flat Magnet
  - Adhesive Mounting Pad
  - Adhesive
  - Stud

- Handling of Transducers
  - Do NOT!:
    - Drop the sensor on the floor
    - Connect a bench power supply to the sensor
    - Remove the sensor with a hammer
    - Use Un-Calibrated Sensors
    - Apply static discharge to accelerometers
  - DO:
    - Store the sensor in the box it came in
    - Connect a constant current supply
    - Remove the sensor using solvent or the proper tool
    - Re-calibrate the sensors
    - Properly ground before handling the sensor





#### **Selecting the Right Accelerometer**

PHYSICAL Weight Connector Mounting Provi Material, Housi Sensing Eleme

Element Style PERFORMANC Sensitivity, ± 5% Range for ± 5 V Frequency Resy Resonant Frequ Broad Band Res Linearity [2] Maximum Trans Strain Sensitiviti

ENVIRONMEN' Maximum Vibral Maximum Shoci Operating Temp TEDS Operating Seal ELECTRICAL Supply Current Compliance Vol Output Impeden Bias Voltage Discharge Time Electrical Isolativ TEDS

- 10mV/G Accelerometer
  Max Acceleration
- 100 mv/G Accelerometer

1000 mv/G Accelerometer

| G                                                                                |                     | • HERMETICALLY SEALED<br>• BASE ISOLATED<br>• IDEAL LOW FREQUENCY RESPONSE<br>• TEDS |                                          |                                                                           |                                                                                             |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| -                                                                                |                     | ENGLIS                                                                               | н                                        | SI                                                                        |                                                                                             |  |  |  |  |  |  |  |  |
| ion<br>g/Connector<br>It                                                         | Type<br>Tapped Hole | 0.35<br>10-32<br>10-32 X.150 j<br>Titanium<br>Ceramic<br>Planar Shear                | 0Z                                       | 10<br>10-32<br>10-32 X.150 ↓<br>Titanium<br>Ceramic<br>Planar Shear       | grams                                                                                       |  |  |  |  |  |  |  |  |
| E<br>[1]<br>bits Output<br>vonse, ± 10%<br>ency<br>volution<br>verse sensitivity |                     | 10<br>500<br>1 to 10000<br>> 32<br>0.0040<br>± 1<br>5                                | mV/g<br>Hz<br>kHz<br>Grms<br>% F.S.      | 1<br>4905<br>1 to 10000<br>> 32<br>0.039<br>± 1<br>5                      | mV/m/s <sup>2</sup><br>m/s <sup>2</sup><br>Hz<br>kHz<br>m/s <sup>2</sup> rms<br>% F.S.<br>% |  |  |  |  |  |  |  |  |
| @ 250µ£                                                                          |                     | 0.002                                                                                | g/με                                     | 0.02                                                                      | m/s²/µɛ                                                                                     |  |  |  |  |  |  |  |  |
| rAL<br>ion<br>c<br>erature Range<br>Temperature                                  |                     | 600<br>3000<br>-60 to +250<br>-40 to +185<br>Hermetic                                | Gpeak<br>Gpeak<br>*F<br>*F               | 5886<br>29430<br>-51 to 121<br>-40 to +85<br>Hermetic                     | m/s² peak<br>m/s² peak<br>*C<br>*C                                                          |  |  |  |  |  |  |  |  |
| Range [3]<br>lage Range<br>ce,Typ<br>Constant<br>on                              |                     | 2 to 20<br>18 to +30<br>20<br>11 to 13<br>0.5 to 1.5<br>10<br>IEEE 1451.4            | mA<br>Volts<br>Ω<br>VDC<br>Sec<br>GΩ,min | 2 to 20<br>18 to +30<br>20<br>11 to 13<br>0.5 to 1.5<br>10<br>IEEE 1451.4 | mA<br>Volts<br>Ω<br>VDC<br>Sec<br>GΩ,min                                                    |  |  |  |  |  |  |  |  |



## **Input Configuration**

| Vib                 | ration                            | VIEW C  | onfi   | guration        | 1        |       |    |        |         |           |                          |          |                        |               |                   |              | ×                   |
|---------------------|-----------------------------------|---------|--------|-----------------|----------|-------|----|--------|---------|-----------|--------------------------|----------|------------------------|---------------|-------------------|--------------|---------------------|
|                     | Parameters Directories            |         |        |                 |          | Users |    |        |         | Verificat | ion                      |          | Graph Defaults         |               |                   |              |                     |
| Hardware Inputs Out |                                   |         | Output | s Units         | Limits R |       |    |        | note In | puts      | E-                       | Mail Not | il Notification Web Se |               |                   |              |                     |
|                     | Saved                             | Configu | ratior | 1               |          |       |    |        |         | -         |                          |          |                        |               |                   |              |                     |
|                     |                                   |         |        | Load configurat |          |       |    |        |         | gurati    | ation Save configuration |          |                        |               |                   |              |                     |
|                     | Channel ID Serial<br>Label Number |         |        | Sensitivity U   |          |       |    | Unit D |         |           |                          | on       | Accel<br>Power         | r TEDS        |                   |              |                     |
| >>                  | 1 Ch                              | 1       |        |                 | ~        |       | 10 |        | mV /    | G         |                          |          | $\sim$                 |               |                   |              |                     |
|                     | 2 Chi                             | 2       |        |                 | ~        |       | 10 |        | mV /    | G         |                          |          | $\sim$                 |               |                   |              |                     |
|                     | 3 Chi                             | 3       |        |                 | ~        |       | 10 |        | mV /    | G         |                          |          | $\sim$                 |               |                   |              |                     |
|                     | 4 Ch                              | 4       |        |                 | ~        |       | 10 |        | mV /    | G         |                          |          | $\sim$                 |               |                   |              |                     |
|                     |                                   |         |        |                 |          |       |    |        |         |           |                          |          |                        |               |                   |              |                     |
|                     |                                   |         |        |                 |          |       |    |        |         |           |                          |          |                        |               |                   |              |                     |
|                     |                                   |         |        |                 |          |       |    |        |         |           |                          |          |                        |               |                   |              |                     |
|                     |                                   |         |        |                 |          |       |    |        |         |           |                          |          |                        |               |                   |              |                     |
|                     |                                   |         |        |                 |          |       |    |        |         |           |                          |          |                        |               |                   |              |                     |
|                     |                                   |         |        |                 |          |       |    |        |         |           |                          |          |                        |               |                   |              |                     |
|                     |                                   |         |        |                 |          |       |    |        |         |           |                          |          |                        |               |                   |              |                     |
|                     |                                   |         |        |                 |          |       |    |        |         |           |                          |          |                        |               |                   |              |                     |
|                     |                                   |         |        |                 |          |       |    |        |         |           |                          |          | -                      |               |                   |              |                     |
|                     |                                   |         |        |                 |          |       |    |        |         |           |                          |          | Re                     | ad All<br>EDS | Databa<br>Selecto | se A<br>or : | dvanced<br>Settings |
|                     |                                   |         |        |                 |          |       |    |        |         |           |                          |          |                        |               |                   |              |                     |
|                     |                                   |         |        |                 |          |       |    |        | (       | ОК        |                          | Ca       | ncel                   |               | Apply             |              | Help                |



# Input Settings in VibrationVIEW

|     | Advanced Input Configu | uration |                  |      |                   |                    |                     |   |                  |      |                   |                    |                     |            |                  |                    |      |        |       |      | Х |
|-----|------------------------|---------|------------------|------|-------------------|--------------------|---------------------|---|------------------|------|-------------------|--------------------|---------------------|------------|------------------|--------------------|------|--------|-------|------|---|
| Sav | ed Configuration       |         |                  |      |                   |                    |                     |   |                  |      |                   |                    |                     |            |                  |                    |      |        |       |      |   |
|     |                        |         |                  | Lo   | oad configuration | Save configuration |                     |   |                  |      |                   |                    |                     |            |                  |                    |      |        |       |      |   |
|     | Channel<br>Label       | ID      | Serial<br>Number | Axis | Transducer Sens   | itivity            | Calibration<br>Date | 1 | Accel .<br>Power | TEDS | Low<br>Bias V C   | Cap D<br>Duple Ing | iff DC<br>out Input | Invert     | Range<br>(Volts) | Manufactu          | ırer | Model  | 1     | Гуре |   |
| » 1 | ¢h1                    |         | ~                |      | ~ 10              | mV/G               |                     |   |                  |      |                   |                    |                     |            | Auto             | ~                  |      | ~      |       | ~    |   |
| 2   | Ch2                    |         | ~                |      | ~ 10              | mV/G               |                     |   |                  |      |                   |                    |                     |            | Auto             | ~                  |      | ~      |       | ~    |   |
| 3   | Ch3                    |         | ~                |      | ~ 10              | mV/G               |                     |   |                  |      |                   |                    |                     |            | Auto             | ~                  |      | ~      |       | ~    |   |
| 4   | Ch4                    |         | ~                |      | ~ 10              | mV/G               |                     |   |                  |      |                   |                    |                     |            | Auto             | ~                  |      | ~      |       | ~    |   |
|     |                        |         |                  |      |                   |                    |                     |   |                  |      | Show<br>Condition | ers                | Read All<br>TEDS    | Data<br>Sa | abase<br>ave     | Database<br>Lookup | ОК   | Cancel | Apply | Help |   |



#### Conclusion

• Questions?

 If you want the slides or want to ask questions at a later time, please email in to <u>vrsales@vibrationresearch.com</u> or feel free to call in at 616-669-3028

• Thanks!

