

Today's Presenter: Joel Minderhoud

We will begin shortly!

• To obtain a copy of these Slides:

E-mail: salesreport@vibrationresearch.com

- Tech Support: Ph: 616-669-3028
 E-Mail: <u>support@vibrationresearch.com</u>
- Visit Us Online at: <u>www.vibrationresearch.com</u>
- If you have an idea for a webinar, let us know!

Meet VR

Joel Minderhoud Research Scientist

- 1. Need to Evaluate the Health of Shaker System
- 2. Use of System Check as a Method for Shaker Validation
- 3. Recommended Method for Shaker Validation
 - Sine Sweep
 - Total Harmonic Distortion Evaluation Tool

Need for Shaker Validation

 Are your test results indicative of vibrations experienced by your product?

Need for Shaker Validation

Or is your shaker introducing vibrations into your test results?

- Damaged Armature
- Damaged Flexure/Roller bearings

VIRRATION RESEARC

 When is the last time you checked if your shaker system was operating according to specifications?

Need for Shaker Validation

- How often should I run a Shaker Validation Test?
 - Make it a routine task
 - Regularity of validation test should be test-facility driven according to your needs and preferences
 - Monthly?
 - Quarterly?
- How similar should physical set-up be for Shaker Validation Test?
 - As identical as possible
 - Bare shaker head!!
 - Head expander only
 - Fixture only

System Check and Sine Sweep Examples

• Bare Table vs. Loose Wrench (Simulation Test)

- Always begin tests with System Check
 - Check for properly attached accelerometers/cables
 - Make sure shaker performs as software requires
 - VR displacement wedge

http://go.vibrationresearch.com/ blog/displacement-wedge-whatis-it-how-to-use-it

- Helpful to evaluate the "health" of shaker system
 - Acceleration Spectrum

- Helpful to evaluate the "health" of shaker system
 - Acceleration Waveform

- Has Limitations
 - Only a snap-shot at a specific frequency
 - Does not employ tracking filters so the data at frequencies outside of setting is not as accurate as with sine sweep.

Recommended Method: Sine Sweep

- Rationale:
 - Relate to shaker manufacturer specs
 - Obtain data about shaker across large frequency spectrum
 - Many ways to evaluate data

• Particularly Total Harmonic Distortion (THD)

Recommended Method: Sine Sweep

Traditional Sine Sweep Test Set-up

- Profile
- Schedule
- Sweep

Recommended Method: Sine Sweep

- Evaluate with ANALYZER
 - Activate "SWEPT THD" (Total Harmonic Distortion)
 - Use large number of lines
 - Not affected by tracking filters

Total Harmonic Distortion

- THD Definition
 - Comparison of all harmonic content in a signal to the fundamental

% THD =
$$\left(\frac{\sqrt{V_2^2 + V_3^2 + V_4^2 + \dots + V_n^2}}{V_1}\right) X 100$$

- V_1 is the fundamental's voltage signal (eg: V @ 60 Hz)
- V_2 , V_3 are the next harmonics (eg: V @ 120 Hz, 180 Hz)
- The larger amount of harmonic content in a signal, the larger the % THD value will be
 - Indicative of noise or undesired vibration in signal

THD Sample Results

THD Sample Results

THD Tolerance?

- Rule of Thumb
 - Less than 10% THD
- Test-facility needs to determine acceptable variance

System Check Sample Results

THD Sample Results

Zoomed at 30 Hz (in order to compare with System Check)

THD Sample Results

- Other Analysis Options with Sine Sweep Many other graphs are available with Sine Sweep data
 - Output Drive
 - Transmissibility
 - Phase

• Output Drive

• Transmissibility

• Phase

THD vs. System Check

- System Check is a good starting point
 - Gives some indication of the "health" of shaker system
 - Limited by the fact that it is a single snap-shot in time of a specific frequency
- Sine Sweep with Total Harmonic Distortion is better
 - More accurate than System Check
 - Because Tracking Filters are employed
 - Because entire frequency spectrum is accurately analyzed
 - More accurate than Random
 - Not all frequencies simulataneously

- Benefits of Sine Sweep Analyzed with THD
 - 1. Identifies possible issues across the **entire** frequency range of shaker system (using tracking filters)
 - 2. Many other graphs are available with Sine Sweep data
 - Output Drive
 - Transmissibility
 - Phase
 - 3. Total Harmonic Distortion is easy to use and interpret

Thank You for Attending!

• To obtain a copy of these Slides:

E-mail: salesreport@vibrationresearch.com

- Tech Support: Ph: 616-669-3028
 E-Mail: <u>support@vibrationresearch.com</u>
- Visit Us Online at: <u>www.vibrationresearch.com</u>

