High Q SRTD

March 2018 Webinar

Jon Drnek

Software Developer

VR Core Focus

To make the world's most innovative sound and vibration technology tools, enabling our customers to make reliable decisions and trustworthy products

Company Values

Strong & Driven Work Ethic

We do the Right Thing

Capable & Competent

Accountable & Responsible

Collaboration

Innovation

Agenda

- Physical Characteristics
 - Large amplitude changes with frequency
 - Long ring down time
 - Slow response
 - Location can shift with amplitude
 - Can be non-linear
- Adaptive Feedback
- Automatic Peak Tracking

Large amplitude change with frequency

- Most obvious characteristics of a resonance.
- The system needs to respond quickly when controlling on a resonance.
 - Slew rate
 - Sweep rate

Slew rate

- Slew rate describes how fast the drive output can change.
 - Increasing rate
 - Decreasing rate
- Output Drive vs Time graph can show slew rate issues.
 - Note the units: dB/sec vs dB/min

Slew rate

- Slew rate describes how fast the drive output can change.
 - Increasing rate
 - Decreasing rate
- Output Drive vs Time graph can show slew rate issues.
 - Note the units: dB/sec vs dB/min

Sweep rate

- The slower a resonance is swept through, the more opportunity there is for control.
- This will result in a more sever test

Slow Response Time

- Resonance response is inversely proportional to the bandwidth of the resonance
 - 1/0.5023 Hz = 1.99 sec response time
- Controlling faster then the resonance can change can cause oscillations.
- The response time of the system should be less then the response time of the resonance
- The input filter must also be considered. The response of the filter is inversely proportional to the width.

Inversely proportional to the resonance bandwidth

- Think of a bell
- Can cause a beat frequency
 - See the graph of sine(20x) + sine(21x)
- Dictated by physics. All you can do is wait it out.

Long ring down time

Location can change with Amplitude

- A resonance can shift location with amplitude.
- Has implications when sweeping at a low level and dwelling at a high level
- Mower blade example shows the resonance shifts by 3 Hz.
 - The amplitude at the two frequencies differ by almost 9x

Location can change with Amplitude

- A resonance can shift location with amplitude.
- Has implications when sweeping at a low level and dwelling at a high level
- Mower blade example shows the resonance shifts by 3 Hz.
 - The amplitude at the two frequencies differ by almost 9x

Location can change with amplitude

- Hold the amplitude of the accel on the resonance constant.
 - Control on the resonance channel
 - Use notching to set a fixed amplitude.
- Start dwelling at a higher frequency and track down into the resonance
- Use the new peak detection option in version 2018.1

SRTD on a breaking part

- Sawtooth pattern
- As the amplitude rises the part fatigues and the resonance shifts.
- When the resonance shifts, the amplitude drops

Adaptive Feedback

- Increasing rate during hold
 - During a hold you can have a slower slew rate since things are not changing as much
- Minimum increasing rate
 - Increasing rate will be limited when leaving the resonance if needed. This is the smallest the increasing rate will be.
- Increasing rate restoration
 - How fast the increasing rate gets set back to the defined value

 These settings allow tighter control during the test but still limit problems in a resonance

Adantive Feedback

SRTD

- Ensure that the Resonance settings are not to fast.
- Use the SRTD Control
 Buttons to find the phase
 with the peak transmissibility
 - Turn off Auto-Direction
 - Adjust Demand Phase
- Look for a peak in the Transmissibility vs Phase graph

SRTD

- Ensure that the Resonance settings are not to fast.
- Use the SRTD Control
 Buttons to find the phase
 with the peak transmissibility
 - Turn off Auto-Direction
 - Adjust Demand Phase
- Look for a peak in the Transmissibility vs Phase graph

SRTD

- Ensure that the Resonance settings are not to fast.
- Use the SRTD Control
 Buttons to find the phase
 with the peak transmissibility
 - Turn off Auto-Direction
 - Adjust Demand Phase
- Look for a peak in the Transmissibility vs Phase graph

Peak detect

- Version 2018 can detect the peak phase automatically.
- Enable Peak Detect on the SRTD buttons.
- The system will automatically adjust the phase until the peak transmissibility is found.
- The phase will be continually adjusted for the duration of the test to always stay on peak.

Peak detect

- Version 2018 can detect the peak phase automatically.
- Enable Peak Detect on the SRTD buttons.
- The system will automatically adjust the phase until the peak transmissibility is found.
- The phase will be continually adjusted for the duration of the test to always stay on peak.

Peak detect

- Version 2018 can detect the peak phase automatically.
- Enable Peak Detect on the SRTD buttons.
- The system will automatically adjust the phase until the peak transmissibility is found.
- The phase will be continually adjusted for the duration of the test to always stay on peak.

[PARAM:PhaseDetectEstimate] [PARAM:SrtdControlsPhaseDemand] [PARAM:SrtdControlsPhaseDisplay]

Aucs 1000

Technical Support Support@VibrationResearch.com

Sales Support VRSales@VibrationResearch.com (616)669-3028

