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Random vibration testing presents a host of new and often 
confusing concepts to the test engineer. Among these, the notion of 
“clipping” or limiting the excitation signal to ±3 standard devia-
tions has caused undo confusion. This article attempts to explain 
what 3s clipping is all about and how it came to haunt us. Given 
the erosion of written history with time, we will do better at the 
former objective than the latter.

Generally we understand that random vibration tests are used to 
approximate the dynamic stress environment in which components 
of automobiles, rockets, missiles, and electronic systems “live.” We 
further understand that such simulations involve shaking compo-
nents using Gaussian noise, a broadband random signal prone to 
making structures hiss and roar during excitation.

Gaussian noise describes the random distribution of vibration 
amplitudes to be statistically normal, or bell-shaped. It implies 
the theoretical possibility of forced dynamic motion (sensed as 
displacement, velocity or acceleration) that includes infinite excur-
sions for a brief instant. While theoretical Gaussian noise considers 
brief intervals of infinite acceleration, velocity or displacement, 
practical testing considers only random motion bound by a crest 
factor, the ratio of a (finite) peak motion to the root-mean-square 
(RMS) value of that dynamic signal.

Note that Gaussian amplitude statistics are unaffected by the 
spectral shape of the random noise. Figure 1 illustrates the graphic 
description of a typical random signal’s statistical properties. The 
upper trace in Figure 1 is a power spectral density (PSD) spectrum 
describing the average frequency content of the signal. The PSD is 
unaffected by the amplitude distribution of the signal; to the first 
approximation, it does not care if the profile is Gaussian or not. 
The lower trace is the probability density function (PDF), which 
illustrates the Gaussian distribution of instantaneous amplitude. 
The PDF is unaffected by the frequency content of the signal. 
Together, these two measurements provide a complete statistical 
picture of a random signal.

In this discussion of 3s clipping, we focus on the probability 
density function (discussed fully in the Appendix). While the 
power spectral density is an extremely important part of random 
vibration testing, it is somewhat incidental to this topic. For pur-
poses of this discussion, it is sufficient to recognize the PSD as a 
plot of (squared) signal amplitude versus frequency and to note 
that the area under a PSD curve is the signal’s mean square and 
that the square-root of this area is the signal’s RMS value.

To Clip Or Not To Clip – History, Hearsay and Heresy
Ask any modern expert in the testing arena why 3s clipping is 

used and you are likely to get one of five responses:
1. It prevents the shaker amplifier from tripping out on high-

amplitude peaks, thereby halting the test. 
2. Clipping minimizes the shaker’s sine force rating required to 

run a specific random test.
3. Limiting extreme Drive peaks minimizes damage to the device 

under test (DUT).
4. Clipping the Drive signal minimizes the required shaker 

stroke.
5. Proper ±3s clipping makes a squeak-and-rattle test sound 

“right.”
If you corner a gray-haired guru, you may even elicit an interest-

ing “they got the logic crossed” bit of heresy. In the late ’40s and 
early ’50s, when the theory of random vibration testing was being 
evolved and the hardware to implement it was being developed, it 
was not so easy to make a random noise generator with Gaussian 

output statistics. A design with enough dynamic range to match 
the Gaussian distribution out to ±3s was judged to be a darned 
good analog signal generator. In other words, ±3s was considered 
a minimum requirement or “just good enough.”

Who wrote down the first test or product specification involving 
±3s clipping? Whose thesis first identified limiting the amplitude 
of a random signal? What problem did he claim this solved? Good 
questions all; questions that none of a baker’s dozen of well-
qualified practitioners queried could answer.

We’ll conduct some experiments that will show Response 1 may 
hold credence (if your amplifier is of dated design). Explanations 
2, 3 and 4 will be shown to be, at best, valid half-truths. Response 
5 will be shown to be a matter poor education. Through it all, the 
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Figure 1. PSD (upper) and PDF (lower) measurements define a random 
signal statistically.
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Figure 2. Random noise generator section of a modern shaker controller.
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notion of an early minimum requirement being perverted into an 
accepted modern maximum retains its charm and more than a 
little credence.

On Clipping and Squeaking
In the “old days,” random waveforms were derived by analog 

means. Switch selectable ns clipping was integrated by diode-
limiting circuits acting on the output of the noise generator. More 
modern systems used digital noise generation, passing the result 
through a digital-to-analog converter (DAC) and a subsequent 
reconstruction or anti-imaging low-pass filter. 

Most controller manufacturers chose the least expensive means 
to implement programmable clipping: the digital signal was 

restricted in amplitude before it was applied to the DAC. This 
produced clipping that was less sharp than the earlier analog diode 
circuits, because the clipping occurred before the reconstruction 
filter. When Vibration Research first introduced the 8500 control-
ler, they went to some pain to produce post-reconstruction filter 
clipping that emulated the superior sharp limiting of earlier equip-
ment. This analog clipping was well accepted for all applications 
except automotive squeak-and-rattle testing, where some users 
claimed digital clipping produced quieter results and therefore 
fewer failed instrument panels.

Vibration Research responded by giving the user a choice of 
either type of limiting, digital clipping before the reconstruction 
filter or analog clipping after the filter. Figure 2 illustrates the 
general arrangement of processing elements of a modern random 
vibration controller. While all manufacturers provide the digital 
clipping module, the VR 8500 is unique in providing both digital 
and analog clipping modules. In fact, the 8500 also provides a 
third clipping option called silent clipping. All three of these were 
investigated experimentally using the setup of Figure 3.

A simple loop-back test was conducted using the 20-to-2,000-Hz 
NAVMAT random profile as the Demand PSD. The test was run at 
1 gRMS, and the controller displayed both the PSD and PDF of the 
Control input signal. Additionally, an external spectrum analyzer 
was used to audit the Control signal over a broader 20-to-20,000-
Hz band.

Figure 4 illustrates the controller’s graphic outputs during a test 
run made without clipping. The upper trace shows the close match 
of the Control PSD to the Demand PSD over the 20-to-2,000-Hz test 
bandwidth. The lower trace presents the PDF of the Control input 
with a logarithmic vertical axis to emphasize the low-amplitude 
tails of the PDF. For reference, this trace overlays the theoretical 
PDF of a Gaussian random variable of 1 gRMS (s = 1). The horizontal 
axis spans ±6 g that corresponds (in this case) with ±6s.

Note the close agreement of PDF form between the Control mea-
surement and the Gaussian equation out to better than ±4s. In fact, 
testing patiently would eventually paint the distribution to ±6s or 
better. The central portion of the PDF fills in very quickly, but the 
tails take much longer to populate. As explained in the appendix, 
it takes 43 times as long to fill the PDF in to ±4s as it does to paint 
the central ±3s. Extending the measured range to ±5s requires 
4,902 times as long, and resolving the function to ±6s requires a 
wait of 1,364,435 as long as the ±3s observation. The important 
facts in Figure 4 are that the generated signal is clearly Gaussian 
and that its amplitude span is well beyond ±3s.

Figure 5 illustrates the audit spectrum of the Control (the Drive) 
signal measured by an external analyzer running at 10 times the 
controller’s bandwidth. The left side of this figure (to 2 kHz) du-
plicates the PSD display of Figure 4. Above 2 kHz, this spectrum 
shows the out-of-band energy of the Drive is 60 to 85 dB below the 
Control level. Note the sharp and precipitous drop like a “brick 
wall” at the upper end of the Control band.

Figure 6 presents the controller’s displays when ±3s digital 

Figure 4. Control PSD and PDF for an unclipped Gaussian NAVMAT 
profile.

Figure 5. Control PSD measured over 20-20,000 Hz for an unclipped Gauss-
ian NAVMAT profile.

Figure 6. Control PSD and PDF for a digitally clipped NAVMAT profile.

Figure 7. Control PSD measured over 20-20,000 Hz for a digitally clipped 
NAVMAT profile.
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clipping is imposed on the NAVMAT profile. Note that the clip-
ping is relatively smooth and gentle, as opposed to a brick-wall 
transition. In essence, the reconstruction filter has smoothed the 
amplitude limiting.

Figure 7 shows the corresponding broadband spectrum. Note 
that the digital clipping did introduce some harmonic distortion; 
this is particularly evident in the 2-3 kHz band where we see an 
increase of up to 40 dB above the unclipped case.

 Figure 8 illustrates the application of analog clipping. Note that 
the ±3s limits are sharper, reflecting limiting after the reconstruc-
tion filter.

Figure 9 shows the above control band spectrum for the analog 
clipping case. Note the much-increased energy above 2 kHz ex-
tending to more than 10 kHz. This is the reason the analog-clipped 

signal produced a different sound in some squeak-and-rattle exami-
nations. The added bandwidth of the Drive signal probably excited 
mechanisms unprovoked by the digitally clipped signal.

Once the physics of the noise difference were understood, Vibra-
tion Research set about developing a new clipping technique that 
would provide the sharp limiting of analog clipping without the 
associated harmonic distortion. That is, they sought an efficient 
hard-limiting process that did not introduce high-frequency sound. 
The resulting procedure is termed silent clipping, and the method 
of its implementation remains a trade secret. 

Figure 10 shows the application of ±3s silent clipping. Note the 
sharp and definitive limiting in the Drive PDF. 

Figure 11 shows the corresponding broadband spectrum. Note 
that the harmonic distortion is reduced to essentially that associ-
ated with soft digital clipping. Therefore, silent clipping embodies 
the strong points of both analog and digital techniques. 

Now it is understood that the sonic difference detected in some 
squeak-and-rattle tests reflected the presence of high-frequency 
(out-of-band) content in the Drive signal. As demonstrated by 
silent clipping, the presence of such added noise has less to do 
with where you apply a limiting process than it does with the care 
with which you perform it.

Can You Really Clip the Control Signal?
The preceding experiments were performed on a simple loop-

back configuration where the Drive and Control signals are identi-
cal. What happens when we actually drive a shaker with a clipped 
Drive? Does the output of the amplifier reflect the limiting? Does an 
accelerometer sitting on the shaker table detect a clipped Control 
signal? Clearly, if clipping the Drive does not result in a clipped 
Control, clipping hypotheses 2, 3 and 4 amount to folklore and 
wishful thinking. 

To investigate this important issue, a Vibration Research 8500 
controller, a Haffler Pro 1200 amplifier, an LDS V-203 shaker, a PCB 
model 288M05 sensor and an instrumentation transformer were 
configured as shown in Figure 12. The same NAVMAT profile and 
1-gRMS level employed in the previous test were used.

Figure 13 shows the results of an unclipped run of 10 minutes. 
The left pane shows the PSD and PDF of the Control acceleration. 
The right pane presents the PDF of the Drive signal (amplifier 
input) above the PDF of the amplifier’s output (sensed through an 
instrument transformer). The mV/Volt scale factors for these two 
signals were chosen so that they too would present with an RMS 
value of 1. All PDFs were formatted to display a ±6s horizontal 
range. Note that all three PDFs (amplifier input, amplifier output 
and table acceleration) are exhibiting Gaussian behavior out to 
better than ±4s.

The same test is repeated (for the same duration) in Figure 14 
with ±3s silent clipping applied. Recall from Figure 2 that clipping 
is always applied to the Drive signal (the amplifier’s input). As the 
right pane of Figure 14 illustrates, the amplifier’s input is sharply 
limited to ±3s. Note that the amplifier’s output also reflects this 

Figure 9. Control PSD measured over 20-20,000 Hz for an analog clipped 
NAVMAT profile.

Figure 8. Control PSD and PDF for an analog clipped NAVMAT profile.

Figure 10. Control PSD and PDF for a NAVMAT profile limited by “silent 
clipping.”

Figure 11. Control PSD measured over 20-20,000 Hz for a “silent-clipped” 
NAVMAT profile.
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limiting. However, the clipped voltage applied to the shaker does 
not result in a limited Control signal. The lower left pane clearly 
shows the table acceleration experiencing ±4s, essentially the same 
range as without Drive clipping.

To drive this point home, the test was rerun with more severe 
clipping. A ±2s silent clipping level was used in Figure 15. Again 
the amplifier’s output reflected the clipping level applied to its 
input, but the Control acceleration experienced a much broader 
range of amplitudes. Without question, clipping the Drive does not 
assure the Control signal is limited to a known s level. So it is most 
unlikely that clipping will limit shaker stroke or force required or 
do anything to protect your delicate DUT.

Each of the three preceding tests was recorded using Recorder-
VIEW.™ The data were played into a MATLAB® program that inte-
grated and double-integrated the measured Control time-waveform 
and computed PDFs for the acceleration (black), velocity (blue) and 
displacement (red). The results are presented in Figure 16.

Figure 16 presents PDFs from 10 minutes of recorded data from 
the unclipped, ±3s-clipped and ±2s-clipped tests. The (3.3 million 

Figure 12. Measuring PDF of drive, shaker input and control signals.
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Figure 13. Control PSD and PDF (left), Drive (upper) and Amp Out (lower); 
unclipped drive.

Figure 14. Control PSD and PDF (left), Drive (upper) and Amp Out (lower); 
±3s clipping.

Figure 15. Control PSD and PDF (left), Drive (upper) and Amp Out (lower); 
±2s clipping.

Figure 16. PDFs of acceleration, velocity and displacement for various drive 
clipping levels.
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sample) Control signal was integrated twice, using a time-domain 
trapezoidal approximation. Prior to each integration, the data were 
passed through a 1-Hz Butterworth high-pass filter to eliminate any 
DC bias. Normalized (x/s) PDFs with a resolution of 0.05s were 
computed for all signals and plotted over a ±6s span. 

While there are slight variations in PDF span between the three 
tests, it is clear that limiting the Drive signal did not produce an 
equivalent limit of the Control acceleration or its time integrals. 
Note that all nine PDFs of Figure 16 exhibit a span of about ±4s, 
regardless of the limiting applied to the Drive. 

One More Test – Just Some Simulation and Stimulation
Since the results of our shaker experiment suggested limiting 

or clipping of the Drive signal might not actually restrict the 
motion requirements of the electrodynamic shaker employed, a 
second experiment was conducted to verify this finding. In this 
investigation, we sought to determine if Drive limiting actually 
impacted shaker stroke requirement. A cautious analyst is always 
suspicious of open-loop integration, no matter how carefully it is 
implemented. 

Therefore, we sought simultaneous test measurement of shaker 
table acceleration and displacement. The former is easy, the latter 
difficult. We took a novel approach, calling upon analog simulation. 
The NAVMAT test profile was applied to a well-understood analog 
circuit representing the V-203 electrodynamic shaker previously 
discussed. The circuit of Figures 17 and 18 models the small shaker 
used in the experiments of Figures 12 through 16.

The NAVMAT profile was applied to the simulation circuit of 
Figures 17 and 18. Two runs were made, the first with no clipping 
and the second with ±3s (silent algorithm) limiting of the Drive 
signal. Figure 19 illustrates the unclipped case; the Drive and the 
resulting (acceleration) Control and its (double-integral) displace-
ment all exhibit considerably greater than ±4s signal span.

In Figure 20, the Drive signal has been deliberately limited to 
±3s, using the highly efficient Vibration Research silent clipping 
method. While the Drive voltage applied to the amplifier is clearly 
limited to this range, the resulting acceleration and displacement 

Figure 17. Bread-board rendering of V-203 shaker simulator circuit shown 
in Figure 18.

Figure 18. Schematic of shaker simulation circuit showing interface with 
vibration controller.

Figure 19. Spectrum and PDF of unclipped Control, PDFs of Drive voltage, 
displacement.

Figure 20 Spectrum and PDF of 3s-clipped Control, PDFs of Drive voltage, 
displacement.

signals still have greater than ±4s, exhibiting their independence 
from Drive limiting. In fact, whenever the control-loop transfer 
function is more complicated than a zero-phase, flat-line, clipping 
of the Drive input, it will have no direct limiting effect on the 
measured Control signal.

Conclusions, Infusions, Illusions and Delusions
For many years, ±3s clipping has been viewed as a defense 

mechanism by those seeking to protect an item they must test, by 
those hoping to get a little more performance out of their existing 
shaker and by those sales types hoping to match a smaller and 
cheaper shaker to an application. It is likely that all of them have 
experienced a false sense of security. The truth is that clipping 
the Drive does not assure any significant change in a shaker’s 
motional statistics.

It is certainly possible that older shaker amplifiers have been 
caused to function at higher RMS levels without tripping by clip-
ping the Drive signal. It is also highly probable that amplifiers 
sensitive to this problem are truly obsolete equipment deserving 
of replacement by modern solid-state designs with protective input 
clamping circuits.

Controller manufacturers do not write testing specifications and 
protocols. If they did, ±3s clipping would quickly be eliminated 
from the testing vocabulary as “an old idea that simply did not pan 
out.” In fact, the pendulum is swinging toward Demand profiles 
that have accentuated PDF tails for more life-like damage detection. 
The Vibration Research Kurtosion™ algorithm leads the industry 
in producing Control signals with higher than Gaussian kurtosis. 
High kurtosis test signals are the antithesis of clipped-signal tests; 
they provide a higher percentage of high sigma test time and they 
work as expected!
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A probability density function (PDF) is a type of amplitude 
histogram drawn with specific scaling. The horizontal axis has the 
units of the measured variable (g, volt, inch, etc.) This axis normally 
spans positive and negative values, representing the entire range 
of the possible instantaneous values the signal may attain.

The area under the PDF curve is always unity (and nondimen-
sional). Therefore, the units of the vertical axis are the reciprocal 
of the horizontal axis units. This scaling differentiates a PDF from 
a raw histogram from which it is normally computed. A raw his-
togram has counts or occurrences as its vertical axis units. In fact, 
measuring a histogram is a counting process.

A PDF is really a mathematic abstract. Like a Fourier transform, 
it is a continuous function of amplitude. and the horizontal axis 
may span ±∞. As with other sophisticated signal statistics, it is 
implemented as a discretized function of sampled data. That is, a 
stream or time history of sampled digital amplitude values is used 
to compute PDF values at a finite number of points spanning the 
± full-scale of the measurement system.

Each (of n) horizontal PDF locations represent a small span of 
amplitudes, just as each point in an FFT spectrum represents the 
output of a narrow-band filter of resolution bandwidth. The points 
are equally spaced in amplitude, so that the horizontal axis has 
resolution and spacing of DX = 2·Xfull-scale/n. A bank of counters 
implements the measurement; these are all cleared to zero count 
prior to measurement. Each time an ADC sample is measured, 
its amplitude is used to address one (of the n) counters, whose 
DX encompasses the sample’s amplitude. This single counter is 
incremented, and attention shifts to the next signal sample. All 
counting is halted to end the measurement. The PDF amplitude for 
the ith point is computed as the counts in the ith counter divided 
by total of all counts in all counters and by DX.

Having a unit area under the PDF curve, p(x), is of fundamental 
importance. A properly scaled PDF allows evaluating the prob-
ability that the signal’s instantaneous amplitude is between Xa 
and Xb. This is simply the area under the PDF curve between x=Xa 
and x=Xb.That is:

 

and therefore:

The PDF, p(x), also exhibits two important properties that link 
it to statistical functions in the time and frequency domains. In 
particular, the signal’s mean value m and its variance, s2, can be 
evaluated from the (first and second moment) integrals:

and

Note that the square root of the variance s is called the signal’s stan-
dard deviation. These same statistical parameters can be extracted 
from a time-history, x(t), by integration in time. Specifically:

Note that the signal mean square defined by Equation 6 is identical 
to the area under a PSD curve. The RMS value may be seen to be 
equal to 2 2m s+ . Whenever a dynamic signal has a zero-valued 
DC component, m is zero and the RMS is identical to the standard 

deviation, s. This is always the case with random signals used for 
shaker testing.

It is interesting to note that when you autocorrelate x(t) in ac-
cordance with Equation 7, the amplitude at lag time t=0 is equal 
to s2+m2. As the lag time approaches infinity, the correlation 
amplitude collapses to m2. That is, the autocorrelation amplitude 
varies between the mean square and the square of the mean. It is 
reassuring to find that all of the traditional signal-statistic functions 
computed in time, frequency or amplitude domains recover the 
signal mean m and standard deviation s.

The first and second-order moments of the PDF identify the mean 
and variance of a signal. Higher-order moments of the PDF provide 
additional statistics exclusive to the amplitude domain. Two of 
the most important of these are skew and kurtosis, the third and 
forth-order moments defined by Equations 8 and 9, respectively. 
Skew describes the symmetry of the PDF, while kurtosis describes 
the spread of the tails.

Is This Normal?
PDFs can exhibit many different shapes, reflecting various signal 

characteristics. For example, a square wave’s PDF has two sharp 
spikes at the ±peak values and is zero everywhere else. A triangle 
wave has a uniform height PDF over the span between its ±peak 
values and is zero outside of this range. A sine wave of peak am-
plitude a has a PDF defined by the equation:

Different types of random signals can also exhibit various PDF 
forms. However, a broad range of natural phenomena, including 
vibration, exhibit the familiar bell-shaped PDF we have come to 
know as a normal distribution. Many normal PDFs are modeled 
well by the classical Gaussian distribution: 

Figure 21 plots the theoretical distribution of Equation 10. Note 
the strong similarity of the measured PDF shown in Figure 1. In 
Figure 21, the area under the ±1s span from the mean is marked in 
blue. The signal amplitude is within this range 68.3% of the time. 
Clearly, the signal’s amplitude spends very little time (less than 
0.27%!) outside of the ±3s span. From this plot you can see the 

Almost Everything You May Want to Know About PDFs

Figure 21. PDF of a Gaussian signal of zero mean with the area bounded 
by m±s shaded.
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Figure 22. Gaussian signal PDF repeated using log vertical axis and color 
marking ±ns bands.

6

5

4

3

2

1

0

±
 S

ig
m

a 
B

an
d 

E
xc

ee
de

d 
at

 L
ea

st
 O

nc
e 

1 10 100 1k 10k  100k 1000K 10000K 100000K 1E+09
          Mean Number of Statistically Independent Samples

Figure 23. Mean number of samples to exceed ±s level.

Figure 24. NAVMAT power spectral density with 3-dB bandwidth marked.
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origin of the old vibration test engineer’s saw, “3s is a reasonable 
approximation of infinity.”

Figure 22 reinforces this notion. Here the vertical axis is changed 
to a logarithmic axis, displaying a much broader range of prob-
abilities and affording us a better view of the tails that describe 
the high-amplitude, low-probability events. The color-coded areas 
illustrate that the signal spends 68.3% of its time within ±1s, 95.5% 
within ±2s, 99.7% within ±3s and 99.999937% within ±4s. In 
short, it paints a clearer picture of the infrequent extreme events. 
We used this view in evaluating the experiments here.

A Gaussian distribution exhibits a skew of m(3s2+m2) and a 
kurtosis of 3s4+6s2m2+m4. Those Gaussian signals used to drive 
shakers have a zero DC value (m=0). So their skew is zero and their 
kurtosis is 3s4, which is commonly expressed by a normalized 
kurtosis value of 3.

Tables of the Gaussian distribution are normally presented in 
normalized form. That is, the tables present p(x) values and areas 
under the p(x) curve for a distribution with zero mean and unit 
variance. In fact, any data set can be normalized by use of a simple 
transformation:

The required mean mx and standard deviation sx can be evaluated 
using Equations 5 and 6. The PDF of the z, p(z), has the following 
properties:

 •	 mz=0
 •	 sz

2=1
 Skew•	 z=0
 kurtosis•	 z = 3

What Time Did Gauss Have In Mind?
We recognize that area under the PDF represents non-dimen-

sional probability. That is, the area bounded by the curve and 
two vertical lines defines the fraction of time that the signal will 
be between the amplitudes represented by the lines. In running 
the experiments discussed herein, we note that the PDF display 
“paints in” from the center out, as intuition would suggest. That 
is, the central, most probable, amplitudes are encountered im-
mediately while the less probable high-s amplitudes occur much 
less frequently.

All of this is satisfying, but raises a basic question: How long 
must I wait for an event bounded by ±ns to occur? The answer is 
that this depends on the bandwidth of the Gaussian random signal 
being generated.

An experiment’s measured PDF is computed from samples 
taken from a time-history. Let’s re-express the information of the 
PDF based on that understanding. As a starting point, consider 
the 0.6827 probability area bounded by ±s. This suggests that bet-
ter than two out of three amplitude samples will fall within one 
standard deviation of the mean, or about one in three will exceed 
the ±1s range. In like manner, about one in 22 samples will ex-
ceed ±2s, while about one of every 370 samples will exceed ±3s 
and one in 15,780 will exceed ±4s. This relationship is plotted in 

Figure 23. It amounts to an alternative-format graph of the CDF, 
the integral of the PDF.

Figure 23 is deliberately plotted with the number of samples re-
quired as the x-axis variable. This allows scaling of the independent 
variable as time, by multiplying the x-axis values by a reference 
time separating statistically independent time samples.

When a vibration controller measures the PDF, the sample rate is 
determined by spectral considerations. The samples are not statisti-
cally independent of one another; they are highly over-sampled or 
redundant. We can estimate the time between statistically inde-
pendent samples from the 3 dB bandwidth of the PSD describing 
the Control signal. As shown in Figure 2, a vibration controller 
forms the Drive signal by shaping the spectral amplitude of a white 
noise signal. The shaping transfer function is determined by the 
Demand profile and the dynamics of the amplifier/shaker/DUT 
being excited. In a simple loop-back test, the Drive and Control 
signals are identical and the shape of the demand profile defines 
the 3-dB bandwidth of the shaping filter.

The PSD for a NAVMAT profile is shown in Figure 24. This signal 
is flat from 80 to 350 Hz. Outside of this span, it falls off at 3 dB/
octave. Therefore, the signal is –3 dB below the central plateau at 
40 and 700 Hz, defining a –3 dB bandwidth, Df–3dB, of 660 Hz for 
the shaping filter.

The rise time t of a system (such as a filter) is defined as the 
time it takes the output signal to swing from 10% of full-scale to 
90% of full-scale in response to a stimulating step input. This 
characteristic reflects the system’s transfer function. The rise time 
is well estimated by the relationship:

In the case of the NAVMAT signal, the rise time is:

For the Vibration Research 8500 controller, the full scale is 10 
volts. In all of the loopback tests, a scale factor of 1000 mV/g was 
employed. Therefore, the full-scale acceleration is 10 gpeak. This 
means, when a 1 gRMS random signal is generated, the full scale 
corresponds to 10 s. So a 10% to 90% full-scale swing corresponds 
to changing by 8s in 530 msec or 1s in 66.3 msec.
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and standard deviation of the square of the random signal. These 
measurements were performed upon a recorded Drive signal using 
RecorderVIEW and MATLAB. The resulting 340 msec scale factor 
agrees very closely with the rise-time scaling line for adjacent 
points separated by 5s or less.

The chi-square method depends upon a basic property of a 
Gaussian random signal. Specifically, it depends on the fact that 
the variance of a Gaussian signal is chi-square distributed. That 
means that if the amplitude of each signal sample is squared, the 
PDF of the squared signal will exhibit a chi-square shape as shown 
in Figure 26. Note that the shape of this probability density function 
is defined by three variables: the mean, the standard deviation and 
the number of degrees of freedom (DOF).

A DOF is simply a statistically independent sample. For a single 
DOF, the chi-squared PDF is exponential in shape. As the number 
of DOF increases, the chi-square distribution begins to develop a 
peak near its mean value.

The chi-square distribution has two important characteristics 
for this application. The mean value 2chi

m  is proportional to the 
number of DOFs, while the standard deviation 2chi

s  is propor-
tional to the square root of twice the number of DOF. The mean 
and the variance 2

2
chi

s  of the squared random sequence can be 
evaluated from Equations 5 and 6. Knowing these two parameters 
allows the number of DOF to be calculated as:

Therefore, a scale factor is derived by averaging the mean and 
variance of a block of N samples of the squared Gaussian noise 
measured at equally spaced time intervals, Dt. The DOF of this 
block (DOF£N) are computed using Equation 14. The (seconds/
sample) scale factor SF is evaluated as:

Finally, MATLAB and RecorderVIEW were used to actually 
measure the mean time required to exceed various sigma levels. 
Well-separated disparate blocks of the sampled random waveform 
were extracted from a long recording. For each block, the number of 
samples exceeding a given sigma level were recorded. The results 
from a large number of blocks were averaged. The time length of 
a block (N·Dt) divided by the averaged number of sigma-exceeding 
samples is presented in Figure 25 as blue circles.

Figure 26. Chi-square PDF distribution for varying numbers of degrees of 
freedom.

The authors can be reached at: docfox@comcast.net or philip@vibra-
tionreasearch.com.
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Figure 25 presents a family of curves reflecting the rise-time 
scaling method. Each of these was derived by multiplying the 
horizontal statistically independent sample axis of Figure 23 by 
a multiple of 66.3 mS. Thus, the traces reflect a maximum change 
between adjacent samples of 1s, 2s, 3s, 4s, 5s and 6s. In Figure 25, 
this scaling estimate is compared with two other means of evaluat-
ing the time required to acquire a single sample exceeding ±ns.

The red trace in Figure 25 reflects evaluating a time-scale factor 
by a very different means. This evaluation technique is termed 
the chi-square scaling method. It requires measuring the mean 

Figure 25. Time required to achieve one ±ns sample during NAVMAT 
random shake test.
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